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I. INTRODUCTION

This spacecraft design project is the output of AE 4871, an advanced spacecraft

design course taught as the culmination of the Space Engineering Curriculum at the Naval

Postgraduate School (NPS). The intent of the course is to provide students with both

satellite system and subsystem design experience as well as the experience of working on a

project team. Due to the small number of students taking the course in 1990 (6), each

student was given responsibility for one primary subsystem and to assist in at least one

other subsystem. The Naval Research Laboratory, Washington D.C., was again asked to

augment the Naval Postgraduate School faculty. Analysis and design of each subsystem

was done to the extent possible within the constraints of an eleven week quarter and

considering the limited number of team members.

Rather than pursue an academic design for this year's course, the project team at the

suggestion of the instructor, Professor Brij Agrawal, decided instead to design a

multimission spacecraft bus based on a Statement of Work issued by Defense Advanced

Research Projects Agency (DARPA). The SOW called for a "proposal to design a small,

low cost, lightweight, general purpose spacecraft bus capable of accommodating any of a

variety of mission payloads. Typical payloads envisioned include those associated with

meteorological, communication, surveillance and tracking, target location, and navigation

mission areas". The two payloads chosen for the Multipurpose Satellite (MPS) bus design

were a multi-spectral meteorological payload called the Advanced Very High Resolution

Radiometer (AVHRR), and an EHF communications package. MPS was designed with

excess internal volume to expand easily and also to be able to accommodate future,

unspecified payloads in the other mission areas.



A. BUS DESCRIPTION

The thrust of this project was to design not a single spacecraft, but to design a

multirnission bus capable of supporting several current payloads and unnamed, unspecified

future payloads. Spiraling costs of spacecraft and shrinking defense budgets necessitated a

fresh look at the feasibility of a multimission spacecraft bus. The design team chose two

very diverse and different payloads, along with them two vastly different orbits, to show

that multimission spacecraft buses are an area where indeed more research and effort needs

to be made. Tradeoffs, of course, were made throughout the design, but optimization of

subsystem components limited weight and volume penalties, performance degradation, and

reliability concerns. Simplicity was chosen over more complex, sophisticated and usually

more efficient designs. Cost of individual subsystem components was not a primary

concern in the design phase, but every effort was made to chose flight tested and flight

proven hardware. Significant cost savings could be realized if a standard spacecraft bus

was indeed designed and purchased in finite quantities.

Throughout this document, justification for subsystem choices will be made where

clarification is necessary. Detailed analyses in all subsystem areas can be found in the

appendices. The AVHRR and the EHF comm payloads previously mentioned were

suggested by DARPA as typical payloads and the launch vehicle was given as PEGASUS,

the new air-launched vehicle built by Orbital Science Corporation and the Hercules

Aerospace Company. This choice of launch vehicle constrained the volumetric dimensions

of the bus. In order to get the AVHRR payload to its design altitude of 450 NM and

98.75 ° inclination, Pegasus performance characteristics limited the bus and payload to

350 lbs. This fact constrained the MPS bus mass to approximately 285 lbs. Every effort

was made to get the EHF package into the Pegasus shroud and to boost it to an 8 hour

Molniya type orbit. Unfortunately however, performance limitations would not allow this

to be done without launching a marginally capable spacecraft. Orbital Sciences Corporation
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hasalreadyrecognizedthisneedandhasa fourthstage/perigeekick motor for Pegasusin

theworks. Until theadventof thismodificationthough,designworkon theEHF payload

assumedthatTAURUS,thesmallStandardLaunchVehicle (SSLV)would bethelaunch

platform.

The MultipurposeSatellitebus is modular in the fact that the various payloads

would "bolt on" theearthfaceandseveralothercomponentscouldalsoberemoved,added

or modifiedaccordingto thepayload'sneeds.Becauseof theSOW'srequirementthatthe

spacecraftbeableto launchwithin 72hours,thismodularityis limited to selectequipment.

Equipmentsuchastheonemillion dollarpluscelestialsensorandthesolararraypanelsare

examples.Theexpensivestarsensorwouldbeinstalledonly onmissionsthatnecessitated

highdegreeof pointingaccuracy.Thenumberof solararraypanelswoulddependon the

power requirementsof the missionpayloadand the orbit. Fuel would be addedin the

amountrequired,if any, just prior to launch.

TheMPS bus,regardlessof thepayload,is a3 axisstabilized,nadirpointing,dual

solararrayspacecraft.Thevariouspayloadswouldattachto theearthfaceof the bus in the

orientation necessary for that payload. The basic bus is a rectangular aluminum frame 32"

x 28" x 23" with five load supporting panels (four sides and anti-earth face). Attitude

control is maintained with a 4 reaction wheel system to accommodate the vast number and

types of possible orbits. One wheel is placed on each of the primary axes and a standby

wheel 45 ° from each axis is also installed. Two magnetic torque rods are installed to

unload the reaction wheels.

Pointing accuracy to + .01 ° is necessitated by the AVHRR payload. This degree of

accuracy can only be accomplished with a celestial star sensor. This extremely expensive

sensor could be removed for the EHF payload where a sun/earth sensor combination could

achieve + 0.5 ° pointing accuracy. The solar array subsystem consists of two 34 in. x 32

in. panels per side for these two payloads. An additional panel can be added on each side

for a future payload; if additional power is required. The arrays are single degree of
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freedompositionedalong the roll axis, and can rotate about this axis to maximize sun

angle. With the EHF package installed, the satellite rotates about its yaw axis so as to

maintain the solar panel axis (roll axis) normal to the sun while providing maximum solar

power efficiency. This yaw motion provides a second degree of freedom for the solar

arrays.

The Electric Power Subsystem (EPS) is taken from the High Latitude

Communication Satellite design, NPS's 1989 design course project, with few exceptions.

The 28 volt single bus, the sixteen 12 Amp-hour batteries and the power converter

equipment remain the same. The solar array area has changed however because of the

different orbits, the different power requirements, and the different launch vehicle

influencing the stowed configuration. Thermal control was designed to be completely

passive. Because most of the support equipment is on continually, thought was given to

distribute high power dissipators so that the bus's internal temperature was uniform. The

payloads are by far the biggest power dissipators and are provided with their own

radiators. The AVHRR radiator is part of the payload and is positioned to radiate to deep

space 180 ° from the sun. There is an additional radiator mounted on the bus to radiate

thermal energy from the internal equipment to supplement the radiator on the AVHRR. The

EHF payload, on the other hand, is configured with optical solar reflectors (OSR) along the

north face of its Earth face panel. Because of the different orbits, various coverings/paint

schemes and insulation will have to be used.

The propulsion system consists of a single 16 inch diameter hydrazine tank with a

nitrogen diaphragm blow down system. Six 0.2 Ib thrusters are located to desaturate the

reaction wheels (secondary to magnetic torque rods), for orbit maintenance, for orbit

stationkeeping, minor orbit changes or ASAT avoidance. The weight penalty incurred if

the payload does not require a propeUant/propulsion system is considered minimal.
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B. PAYLOAD OVERVIEW

1. Advanced Very High Resolution Radiometer (AVHRR)

The AVHRR is an operational radiometer designed to provide meteorological data

from the year 1990 to the year 2000. The AVHRR scans the earth's surface several times

each day in the spectral regions from 0.7 to 0.12 microns. These six spectral bands can be

downlinked in either high or low resolution modes. Operating 24 hours a day, the

AVHRR can provide land, water, and cloud imaging; sea surface temperature; and ice

concentration and coverage.

The AVHRR would be launched by Pegasus into a 450 NM (833 km) 0830

descending or 1530 ascending sun synchronous orbit at a 98.75 ° inclination. Orbit period

is 101 minutes with worst case 37 minute eclipse occurring during the summer. Average

eclipse time is on the order of 33 minutes. The AVHRR is mounted on the earth face so

that the bus is nadir pointing and the bus is 'flown' so that the solar arrays are positioned

along the roll axis. Rather than incurring an increase in the cost and complexity of two

degree of freedom solar arrays, the solar arrays are single degree of freedom and oversized

to to compensate for the cosine effect of the sun's rays in relation to the orbit plane.

Although the AVHRR requires only a nominal amount of power, the fact that it is in eclipse

for greater than one third of its orbit necessitates a large power requirement for battery

charging. Negligible radiation damage and orbit altitude degradation is experienced at 450

NM. The MPS bus with the AVHRR mounted is depicted in Figure 1.1.

.a. °



192"

Sun Tracking Solar Array

FIGURE 1.1 MPS Bus in AVHRR Configuration

2. Extremely High Frequency (EHF) Mission

The El-IF payload is to be used to supplement the existing communication facilities

of the operational forces in time of crisis. The payload was designed to be quickly mated

with the MPS bus and launched within 72 hours. The antenna/feedhorn arrangement was

designed and provided by Lincoln Laboratory.

The EHF communications payload is to be launched by Taurus (SSLV) into a six,

eight, or twelve hour Molniya type orbit. For this design, an eight hour Molniya type orbit

was chosen with a 500 km perigee and a 27,000 km apogee. Worst case eclipse for this

orbit is 52 minutes. The EHF payload consists of a 32" x 28" x 6" structural box that

supports the EHF antenna structure and houses the EHF R/T and the 'IT&C equipment.

The EHF and TT&C antennas and the earth sensor are located on the earth face of this box

that is affixed to the earth face of the MPS bus. Optical solar reflectors are mounted on the

6



north face of the structural box and provide the necessary cooling for the travelling wave

tube amplifiers (TWTA). The solar array configuration for the El-IF consists of the same

panels as the AVHRR. The MPS bus with the EHF payload is depicted in Figure 1.2.

EHF Feedh°rn Assembly'_r

Variable Beamwidlh Antenna

34"

FIGURE 1.2 MPS Bus in EHF Configuration



C. LAUNCH VEHICLE DESCRIPTION

I. PEGASUS Air Launched Vehicle (ALV)

The Pegasus air launched booster is a three stage solid propellant winged rocket

designed specifically for the insertion of small payloads into orbit. The 50 foot long, 50

inch diameter booster weighs 42,000 lbs and is carried aloft by a conventional

transport/bomber-class aircraft (B-52, B-747, L-1011). Once oriented along the desired

orbit direction, level at approximately 42,000 feet, and flying at high subsonic speed, the

parent aircraft releases the Pegasus booster. The booster freefalls with active guidance to

clear the carrier aircraft while executing a pitch-up maneuver to place it in the proper attitude

for motor ignition. After first stage ignition, the vehicle follows a lifting-ascent trajectory

to orbit. The dynamic payload envelope is detailed in Figure 1.3

Fairing Dynamic

Envelope

Fairing

38.5"

108" R 46"

FIGURE 1.3 Pegasus Dynamic Shroud
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2. TAURUS Standard Small Launch Vehicle (SSLV)

Taurus is a four-stage, inertially-guided, 3-axis stabilized, solid propellant launch

vehicle proposed by Orbital Science Corporation. The design incorporates a Pegasus first,

second, and third stage atop a Peacekeeper ICBM. Taurus is fully transportable with rapid

launch site establishment and launch call up. Initial performance estimates are described in

Table 1.1.

Perigee

270 nm

Apogee

21400 nm

Period Payload

194 Lb

Enhanced

12 Hrs 458 Lb

270 nm 14773 nm 8 Hrs 277 Lb 573 Lb

270 nm 10945 nm 6 Hrs 362 Lb 694 Lb

270 nm 6658 nm 4 Hrs 542 Lb 953 Lb

TABLE 1.1 Molniya Type Orbits for SSLV Ballasted Vehicle

Because Pegasus is unable to propel an EHF payload into an 8 hour Molniya type

orbit, Taurus would be the launch vehicle of choice for this payload. The 50 inch diameter

x 90 inch long dynamic envelope of the shroud allows for the addition of a third solar array

panel per side if needed (the 46"diameter shroud of Pegasus allows only two panels per

side). The Taurus dynamic shroud is depicted in Figure 1.4.



-204"

,108"

Fairing Dynamic Envelope

Fairing

FIGURE 1.4 Taurus Dynamic Shroud
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II. BUS CONFIGURATION

The MPS bus as previously mentioned, is not alone an operational spacecraft, but a

vehicle used in conjunction with a number of various payloads to form a spacecraft. The

bus itself as depicted in Figure 2.1, is a 270 lb rectangular box with all the subsystems

necessary to fly a variety of orbits and missions.

5ADM

Ro{_ RWA

FIGURE 2.1 Multiple Purpose Satellite Bus

The choice of equipment and its location within the bus will be detailed in the

various subsections to follow. The main feature of the bus is its ability to support a variety

II



of 'bolt on' payloads. With the adventof programmablecircuitry, equipmentsuchas

reactionwheels,solararraydrive motorsandpowercontrol electronicscanbeadaptedto

almostanyorbit or mission.It is feasibletoprogramtheentirebusto supportthepayload,

regardlessof thedesiredorbit. Thisprogramingwouldbeperformedafterpayloadmating

to thebusandjust prior to launch. Figures2.2and2.3 show the earth faces of both the

AVI-LRR and the EI-IF payloads while the five load supporting panels standard to the MPS

bus are depicted in Figures 2.4 to 2.8. A side view of the folded configuration of both

payloads as well as the top view of the AVHRR is depicted in Figures 2.9 to 2.11. Lastly,

a view of the solar arrays unfolding is depicted in Figure 2.12.
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A. EQUIPMENT LAYOUTS

1. Earth Face

Figure 2.2 shows the earth face in the AVHRR configuration. Mounted also on the

earth face are the earth sensor, two dipole antenna and a six element rnicrostrip array

antenna. Mounted on the underside of the face arc the RTU and the RCU.

SHF an±enna

AVHRR payloao

whlp an'tenna

RTL

y_w

PoLL

FIGURE 2.2 Earth Face With the AVHRR Mounted
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b. EHF

Figure 2.3 depicts the EHF antenna structure mounted on its 6" x 32" x 28" frame.

Seen are the 22 and 44 Ghz feedhorns, the variable beamwidth antenna, two earth coverage

feedhorns and the scanning earth sensor. Unseen on the underside are the RTU and RCU

units and the EHF travelling wave tube amplifiers. Also not shown in this diagram are the

optical solar reflectors located on the north face of this frame.

EHF

_eed horns

earth coverage
?eed horn

FIGURE 2.3 Earth Face With the EHF Payload Mounted
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2. Anti-Earth Face

Mounted on the anti-earth face are the yaw reaction wheel assembly and the 16 inch

diameter fuel tank. The fuel tank supports attach to a waistband on the fuel tank and then

again to the rectangular frame. Not depicted is a 22 inch diameter, one sixteenth inch thick

disk used to transmit the axial load of the fuel tank to the Marmon clamp assembly directly

below this panel. Also not shown on the underside of this panel is a digital sun sensor and

four thrusters. The anti-earth face is depicted in Figure 2.4.

yaw RWA

tank su por±s

28"

L 32" J

FIGURE 2.4 Anti-Earth Face
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3. North Face

Affixed to the north face are the Global Positioning System microreceiver, the

second digital sun sensor, and the backup reaction wheel. The backup reaction wheel is

skewed 45 ° to the primary axes of the spacecraft. The north face is shown in Figure 2.5.

32"

F

backup

sun sens

GPS

L
23"

RWA

FIGURE 2.5 North Face
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4. South Face

Attached to the south face are the celestial sensor assembly and pitch reaction wheel

assembly. The south face is depicted in Figure 2.6.

roll -pl _¢Ch
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FIGURE 2.6 South Face

32"
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5. East Face

Mounted on the east face are the roll reaction wheel assembly, a solar array drive

motor (SADM), the gyro assembly, and the attitude control computer. In addition, two

thrusters are mounted through this face. The east face is depicted in Figure 2.7.

23"

roll

FIGURE 2.7 East Face
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6. West Face

The west face has mounted to it a SADM, the power control electronics, and sixteen

NiH2 battery cells. The batteries are contained in eight common pressure vessels but are

depicted as a box for simplicity. The west face is depicted in Figure 2.8.

r-tit p_Eh

Y

FIGURE 2.8 West Face
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7. Stowed Configuration

The launch vehicle for the AVHRR is Pegasus. A stowed AVHRR is shown in the

Pegasus dynamic shroud in Figure 2.9. A top view of the AVHRR in the Pegasus

dynamic shroud is depicted in Figure 2.10.
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FIGURE 2.9 Side view of MPS Bus w/AVHRR Payload in Folded Configuration
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FIGURE 2.10 Top view of MPS Bus w/AVHRR Payload in Folded Configuration
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FIGURE2.11 Side view of MPS Bus w/EHF Payload in Folded Configuration
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Figure 2.12depictsthe MPSbusdeployingits solar arrays. The solar arrays arc

affixed to the east and west faces of the bus, but are folded over onto the north and south

faces while in the stowed configuration. The two solar panels per side are stowed such that

the solar cells arc positioned outboard, in the event that electrical power is needed prior to

their deployment. The Y shaped yokes provide a 16 inch clearance from the bus. This

view is looking at the anti-earth face, with the marmon clamp assembly clearly visible.

FIGURE 2.12 MPS Bus with Solar Array Deploying
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B. SPACECRAFT BUS CONFIGURATIONS/SUMMARIES

The basic spacecraft bus just described is used with payloads that will have

different power, structural and propulsion requirements. A mass, electrical power, and

propellant summary is provided in Table 2.1 through Table 2.4 describing the requirements

for the AVI-IRR and El-IF payloads. Fuel loads arc assumed to be nominal

1. Mass Summaries

SUBSYSTEM

Mass of S/C structure

Dr), Mass Reaction Control System

Mass of Attitude Control System

Mechanical Inte_1"ation Mass

Electrical Power Subsystem Mass

Thermal Control Subsystem Mass

Telemetry and Control Mass

Payload

Mass Mar_in

Dry Spacecraft Mass

Propellant/Pressurant

Spacecraft Mass At Separation

AVHRR

Mass (kg/Ib)

20.75 / 45.75

15.20 / 33.51

24.72 / 54.50

1.00 / 2.20

37.06 / 81.70

2.54 / 5.60

4.50 / 9.92

29.32 / 64.64

13.51 / 29.78

135.09 / 297.82

11.02 / 24.29

159.62 / 351.89

EHF COMM

Mass (kg/Ib)

27.13 / 59.81

15.20 / 33.51

21.55 / 47.51

1.00 / 2.20

37.06 / 81.70

5.50/12.13

4.50 / 9.92

38.18 / 84.17

15.01 / 33.09

150.12 / 330.96

13.02 / 28.70

178.15 / 392.75

TABLE 2.1 Mass Sunmaary Comparison
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2. Electrical Power Summaries

Battery Charging

TT&C

Attitude Control

Normal Ops

or)

76.0

11.2

54.0

Launch/Ascent

(w)

0.0

11.2

4.1

Sun/Earth/Star Sensors 4.4 0.0

Propulsion 6.1 42.1

Solar Array Drives

Power Control

10.0 0.0

4.1 2.0

Bus Harness Losses 4.0 3.0

Payload 28.0 4.0

System Reserve 4.0 0.0

Total 201.8 66.4

313.9EOL w/cosine effect

Activation Eclipse

(w) (w)

0.0 0.0

11.2 11.2

54.0 54.0

4.4 4.4

42.1 0.0

10.0 0.0

4.1 4.1

3.0 3.0

4.0 28.0

0.0 0.0

132.8 104.7

TABLE 2.2 Electrical Power Summary - AVHRR
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BatteryCharging
Tr&c

Normal Ops

(w)

25.0

Launch/Ascent

(w)

0.0

Activation

(w)

0.0

Eclipse

(w)

0.0

11.2 11.2 11.2 11.2

Attitude Control 54.0 4.1 54.0 54.0

Surt_mh/Star Sensors 4.4 0.0 4.4 4.4

Propulsion

SolarArray Drives

Power Control

6.1 42.1 42.1 6.1

10.0 0.0 10.0 10.0

4.1 2.0 4.1 4.1

Bus Harness Losses 4.0 3.0 3.0 3.0

Payload 115.0 4.0 4.0 57.5

System Reserve 4.0 0.0 0.0 0.0

Total 237.8 66.4 132.8 150.3

TABLE 2.3 Electrical Power Summary - EHF Comm
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3. Propellant Budget/Summary

The propellant budgets were estimated as:

Maneuver

Stationkeepinl_

Orbit Maintenance

AVHRR EHF

(kg)

6.0

(kg)

8.0

3.42 3.42

Desaturation 1.0 1.0

Margin 0.1 0.1

Orbit Deboost 0.5 0.5

Total 11.02 13.02

TABLE 2.4 Propellant Budget Summary
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III. PAYLOADS

A. AVHRR

1. Functional Description

The Advanced Very High Resolution Radiometer (AVHRR) provides data for

transmission to both Automatic Picture Transmission (APT) and High Resolution Picture

Transmission (HRPT) users. The AVHRR is a scanning radiometer which is sensitive in

six spectral regions. In these spectral regions, the payload monitors data for day and night

cloud mapping, sea surface temperature mapping, and other oceanographic and hydrologic

applications. The HRPT data is full resolution (1.1 km) while APT data is at a reduced

resolution to maintain allowable bandwidth. The AFT transmission is maintained for use

by ground terminals that do not have HRPT capability (i.e. third world countries).

Specific design considerations (such as pointing accuracy and thermal control) that

are driven by the AVHRR payload are discussed later in appropriate subsystem sections.

Communications:

For the communications design considerations of the AVHRR payload; HRPT,

APT, and TT&C data must be transmitted and received in a format that is compatible with

existing TIROS HRPT ground stations. Also, the TI'&C and command uplink channels

are designed to be more rigid to insure that control could always be maintained even in the

event of an attitude control failure resulting in a tumbling satellite. In order to accomplish

this, data had to formatted at the following frequencies, data rates, and modulation formats:
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Type

HRPT

APT

TI'&C

COMMAND

Data Rate

665 kbps

2 kbps

8.32 kbps

1 kbps

Carrier Freq

1.707 GHZ

137.5 MHz

Modulation

BPSK

AM/HVl

136.77 MHz BPSK

148.56 MHz FSK/AM

TABLE 3.1 AVH Channels

Table J.2 in Appendix J shows the link analysis for each of these data channels.

The design is for a 10 -6 BER with a 2 dB link margin (The command uplink and q"I'&C

use a 3 dB margin). Free space losses at these frequencies are relatively low due to the

lower orbit of the AVHRR payload. This allowed an ample margin in the link analysis and

led to lower gain antennas and lower transmitted powers.

To transmit and receive at these frequencies, two antennas were needed because no

one antenna has a bandwidth wide enough to cover all of the carrier frequencies.

1. One antenna can cover all three of the VHF frequencies from 136-149 MHz. It

will have to have a wide beamwidth so that the satellite will be able to receive a command

uplink if the attitude control system fails and the satellite starts tumbling. Because the

wavelengths at these frequencies are on the order of two meters and because a very low

gain antenna was acceptable, two whip antennas mounted in such a way that they would be

orthogonal to each other but parallel to the earth face were chosen as shown in Figure 2.1.

The whips are 23 inches long in order to resonate at a quarter wavelength. This gives a

low gain, lightweight antenna system with an omnidirectional beam pattern that could be

completely stowed for launch.
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2. The second antenna had to be able to transmit at 1.7 GHz with a gain of 4 dB.

(See Table 3.1 and Table J.2) The beamwidth did not have to be wide nor was a high

antenna gain needed. The design criteria was weight. With this in mind, a Microstrip

Antenna was chosen. Figure 3.1 shows one element of this antenna.

FIGURE 3.1 Microswip Element

(dimensions in inches)

The advantages of a microstrip antenna are:

1. Low cost due to inexpensive mass production

procedures.

2. Very thin and conformal to the earth face of the

satellite.

3. Negligible weight

4. Surprisingly efficient (typically 80% - 90%)

5. Very reliable since the antenna is essentially one

continuous piece of copper. The most common failure
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is atthepointwherethefeedpin is solderedto the

microstripelement.

The metalgroundplatefor this antennais simply thealuminumearth faceof the

satellite. The dielectric substrateis teflon-fiberglasswhich is commonly used. The

microstrip element is copper etchedfrom one side of a printed circuit board. The

dimensionsandcharacteristicsof thisantennafollow:

B_d_dth: The bandwidth is a function of the thickness of the dielectric substrate

by the following formula:

BW = 4t .2 t
1/32 (3.1)

With a thickness of .005 inches, the bandwidth is 1.849 MHz which more than adequately

covers the signal bandwidth of 1.33 MHz.

nk.c,_0_gLh....L_: The Length of the microstrip element is roughly one-half of the

wavelength through the dielectric substrate as calculated with the following formula:

L = 0.49 -- (3.2)

where 13r-- 2.45 and _.o = 6.69 inches. Therefore L = 2.095 inches.

Width (W): The width of the microstrip element must be less than a wavelength in

the dielectric. The width was chosen to be 1 inch.

Array Dimensions: In order to get sufficient gain, six microstrip elements were

needed in an array as shown in Figure 3.2.

31



7-
I
I

4.79

l
-_ 3.@0

FIGURE 3.2 6-Element Microstrip Array

(dimensions in inches)

Gain (G): The gain of the antenna can be approximated with the following formula:

4xA ot
Gain _ 10 log -ST-" 2- (D1 + D2)

ko

(3.3)

where A = DI*D2, D1 = effective width of array, D 2 = height of array, and a =

attenuation ( 0.4 dB/ft for a 50 W microstrip line on 1/32 in Teflon fiberglass at 2.2 GHz)

D1 = 4.2 inches

D2 = 3.02 inches

A = 12.684 inches

therefore G = 4.072 dB which is adequate to close the link.
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B. Extremely High Frequency (EHF)

The basic design for the EHF Payload is shown in Figure 3.3. It includes the

antennas required to support the communications payload, an attitude control package

receiving commands from the RCU, a communications repeater and a TI'&C package.

Attitude

Control

i

Comm

Repeater

Antennas J

Telemetry & Tracking

Communications Downlink

Communications Upllnk

Command Uplink

Tracking Beacon

(if needed)

FIGURE 3.3 EHF Payload Configuration

33



I. EHF Bandwidth Allocation

The payload was designed to be compatible with MIL STD 1582 at the unclassified

level. This drove the selection of uplink and downlink frequencies as well as bandwidth,

modulation techniques and several other circuit parameters. Figure 3.4 shows what the

signal waveform will look like. The signal has a bandwidth of 7.84 MHz. This waveform

will be hopping at a rate of 3000 hops per second over 255 different hop frequencies. This

fills a bandwidth of 2 GHz as illustrated in Equation 3.4 where B is the total bandwidth and

b is the bandwidth of a single hop. The resulting processing gain is 24.06 dB as shown in

Equation 3.6. This translates as immunity to jamming since, even though the signal only

takes up a bandwidth of 7.84 MHz, the jammer would have to jam a significant portion of

the 2 GHz bandwidth in order to cause real damage to the integrity of the link. Frequency

hopping also provides protection from multipath fading since, by the time a signal could

reach the antenna by an alternate path to introduce fading, the transmitter will have already

hopped to a different frequency.

B
Number of hop frequencies -- _- = 255 (3.4)

b = 245 KHz * 32 channels = 7.84 MHz

B
Processing gain = 10 log _ -- 24.06 dB

(3.5)

(3.6)
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fc-3.92 MHz fc+3.92 MHz

FIGURE 3.4 EHF Bandwidth Allocation

Figure 3.4 shows that the signal will contain 32 channels where the center

frequencies are spaced 245 KHz apart. This gives a channel bandwidth of 7.84 MHz as

shown in Equation 3.5. With a data rate of 2.4 kbps, this will give a substantial guard

band and inter-symbol interference will be negligible. Of these 32 channels, 30 of them

will be used by the customer to transmit data from one earth terminal to another by a "Bent

Pipe" approach.

The satellite will not transform the data channels. However, the customer should

use FSK modulation to transmit the data. PSK requires that coherent phase knowledge be

maintained and this is very difficult in a Frequency Hopping channel. MIL STD 1582

should be consulted for the requirements for low data rate transmission. Encryption, error

correction coding, and other safeguards are required and are the responsibility of the

customer.
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The lowest frequencychannelwill be partitioned in half for telemetry downlink

signals and command uplink signals. The command check circuit pulls out the command

channel and checks for a command signal. Then the telemetry signal is inserted.

The remaining channel is used for channel acquisition so that the customer may gain

access to the link and be assigned a channel to use. Acquisition is done using acquisition

codes contained in MIL STD 1582. The Net Control Unit (NCU) monitors the acquisition

channel and reads all incoming acquisition messages. When link access is requested, the

NCU will assign the next open data channel. The customer will be given a channel which is

his to use until either party terminates the link or the link is preempted by higher priority

traffic.

2. EHF Antenna

A number of studies are ongoing in the field of EHF antennas. For example,

Electro Magnetic Sciences is building a Spherical Lens Multi-beam Antenna that will

operate 271 separate feeds. These feeds will travel through extensive switch trees to 211

ports at the lens assembly. The interesting thing about this project is that the discovery of a

flangeless interconnect method for lightweight, smaller sized switches has made it possible

to package many feeds into a much smaller package for more detailed beamforming than

was ever before possible.

Another example is the Variable Beamwidth Antenna (VBWA) that is under study

by MIT Lincoln Lab. The MPS EHF payload was designed to accommodate the Variable

Beamwidth Antenna both in weight and power requirements. The data for the Variable

Beamwidth Antenna as presented by MIT Lincoln Lab is listed below:

Weight -- 14.57 lbs

Power required = 20 watts

Efficiency = 0.75%

Gain Versus Beamwidth = See Figure 3.6
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The basic idea behind this antenna assembly is to allow the capability to vary the

beamwidth of the antenna with a cluster of feedhorns in order to maintain a constant

coverage area on the earth while maximizing the gain of the antenna. For a circular orbiting

sateUite with a nadir-pointing antenna there will be little advantage while onstation, but if

the satellite is in an elliptical orbit or the beam is scanning away from a nadir position, the

VBWA will allow for higher antenna gains at higher altitudes and wider beamwidths at

lower altitudes.

FIGURE 3.5 Feedhom Arrangement

The MIT assembly as shown in Figure 2.3 has a feedhom cluster of 19 feedhorns

arranged as shown in Figure 3.5. When the center feedhorn is the only one in operation,

the beamwidth will be 4 ° (to the -3 dB point) and the gain will be 32 dB. As the satellite

draws closer to the earth, a wider beamwidth will be needed to maintain the same swath

width. As this happens, power will be switched to the middle ring of feedhorns to

gradually widen the beamwidth and maintain the swath width. At some point in the orbit,

the middle ring of feedhorns will reach a maximum power and it will become necessary to
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beginswitchingpowerto the outer ring of feedhorns. Once the outer ring of feedhorns

have reached maximum power, the antenna will be at a maximum beamwidth of 28 ° and a

minimum gain of 20 dB. The following paragraphs will discuss the operation of the

Variable Beamwidth Antenna in an 8 hour Molniya orbit as designed for the MPS EHF

payload.

The following points of operation for bearnwidth versus gain were given.

ae  dth Gain

4 ° 32 dB

8 ° 27 dB

12 ° 24 dB

22 ° 22 dB

28 ° 20 dB

The above data was assumed to be piecewise linear and Figure 3.6 was generated. In

actuality, the plot of beamwidth versus gain will not be linear, but this approximation will

serve to illustrate the advantages of having a variable beamwidth antenna.
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FIGURE 3.6 Gain Versus Beamwidth
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FIGURE 3.7 Beamwidth versus Altitude

Figure 3.7 shows a plot of the beamwidth vs. altitude needed to maintain various

swath widths. The plot assumes a flat earth and clips at the maximum and minirnum

beamwidths. It can be seen that certain swath widths can not be mainiained from an apogee

of 27,358 km to a perigee of 500 km. The best case scenario appears to be the 2000 km

swath width. It can be achieved at a 4000 km altitude and maintained all the way to apogee

at a 4.19 ° beamwidth. The 1000 km swath width will reach the minimum beamwidth at

14500 km altitude, while the 6000 km swath width can not be achieved until a 12000 km

altitude and will never take advantage of the minimum beamwidth.
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Beamwidth VS Time after Perigee
(for several Swath Widths)
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FIGURE 3.8 Beamwidth versus Time After Perigee

Figure 3.8 illustrates the requirements for beamwidth versus time after perigee that

will have to be programed into an onboard processor to maintain a desired swath width.

This processor can receive a command uplink from a ground terminal to update the antenna

operation or perhaps change to a different mode of operation.

A

£.9

Gain VS Altitude
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FIGURE 3.9 Gain Versus Altitude
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FIGURE 3.10 Gain Versus Time After Perigee

Using the information from Figure 3.6 about the behavior of the antenna gain with

changing beamwidth, Figure 3.9 and 3.10 are generated to show what will happen to the

gain as a function of altitude and time after perigee.

3. Pointing Losses

One problem that should be considered when designing an antenna satellite system

is the possibility of losses due to pointing inaccuracies or pointing losses. These losses are

usually considered in the earth station, but they should also be considered in the satellite.
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FIGURE 3.11 Pointing Losses

Figure 3.11 shows an illustration of what constitutes pointing losses. From this

illustration, it can be seen that pointing losses are a function of the off axis angle from the

target. For the VBWA, the shape of the beam obeys a Gaussian equation (as calculated in

Equation 3.7) for each feedhorn. Therefore this equation can be used to analyze the
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pointing losses for the satellite operating at its minimum beamwidth. The wider

beamwidths will exhibit a flatter beamshape giving lower pointing losses and therefore the

minimum beamwidth will be the worst case.

G = Go e"k°2 (3.7)

Figure 3.12 shows the shape of the beam as a function of off axis angle. It can be

seen that an off axis angle of 2 ° gives 3 dB of pointing losses. The pointing accuracy

should be maintained at less than 1° to ensure a good link margin. In satellite design it is

easier to maintain low roll and pitch errors than it is to maintain low yaw errors. MPS is

designed to have a roll error of 0.1 °, a pitch error of 0.1% and a yaw error of 0.5 °. Most

of the pointing losses for MPS will be due to yaw error. Since the satellite will most often

be nadir pointing and since the beamshape is symmetric about its center axis, yaw error will

have no effect on pointing losses most of the time. However, the antenna reflector

assembly does have two degrees of freedom and can scan up to 50 ° off the nadir. When

the reflector is not nadir pointing, yaw error will give some pointing losses. To see this

effect, first use Equation 3.8 to convert max yaw error (¢_) and scan angle (W) into off axis

angle (0). Figure 3.13 shows the pointing losses as a function of scan angle for various

yaw errors. The worst case scenario for MPS is when yaw error is at 0.5 ° and the antenna

reflector is scanning out to 50 °. From Figure 3.I3, this translates to a pointing loss of

-3.3(10 -5) dB. Therefore, pointing losses from the MPS Bus should not be a problem.

sin 2 (_) (1 - cos ¢_) = (1 - cos O) (3.8)

44



Gain vs Off Axis Angle
(For one feed horn)
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FIGURE 3.12 Gain Versus Off Axis Angle
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FIGURE 3.13. Gain Versus Scan Angle
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4. EHF Communications Repeater

The Communications Repeater will perform the following functions:

I. Receive a 44 GHz signal with a 2 GHz bandwidth.

2. Down convertthe signalto an IF frequency that will

stillallow for2 GHz bandwidth.

3. Demodulate the frequency hopping pattern.

4. Down convert to another IF frequency.

5. Check the signal for a command uplink signal and send

it to the T'I'&C package.

6. Check the signal for an acquisition control message and act accordingly.

7. Incorporate a telemetry downlink signal.

8. Up convert the signal to 20 GHz.

9. Frequency hop the signal back to 2 GHz bandwidth.

10. Amplify the power up to 20 watts.

11. Transmit a 20 GHz signal with a 2 GHz bandwidth.

Figure 3.15 shows a simple block diagram of the communications repeater. It can

be seen that each of the above requirements are met. The signal is received from the

antenna and amplified. Then it is downconverted to 8 GHz where it is dehopped to 100

MHz at a 7.98 MHz bandwidth. Then the command channel is filtered out and sent to the

RTU in the Tr&c package. At this point, telemetry information will be inserted into the

telemetry channel of the signal for downlink to the earth station. Then the signal is

upconverted to 20 GHz. The signal is then frequency hopped back to 2 GHz bandwidth

and amplified for transmission to earth.

The repeater has two Traveling Wave Tube Amplifiers (TWTA's) for redundancy.

Figure 3.14 shows the operating characteristics of this amplifier. It can be seen from the

figure that the optimum operating point is at the peak of the curve. If the input power
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varieseitherway (especially to the right), a loss of efficiency will result. For this reason,

each TWTA is preceded by a hard limiter to insure that the input power stays at the

operating point.

Pout

Op Point _v
Pin

FIGURE 3.14 TWTA Characteristics

Within the Communications Receiver are several more complicated circuits that are

shown in Figures 3.16, 3.17, and 3. I8. These circuits are discussed in more detail.
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FIGURE 3.15 Communications Repeater
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5. Dehop Circuit

Figure 3.16 shows a block diagram of the dehopping circuit. The hopping signal

comes into the circuit with a bandwidth of 2 GHz which consists of 255 different hop

frequencies. The trap filter is a narrow band f'flter that is waiting for one particular hop to

occur. When the target hop occurs, the signal is sent to the envelope detector which is

essentially a low pass filter where the signal will become a pulse that is the same duration

as the target hop. The threshold detector takes the energy present within the target hop

hand and sends a short pulse to the fee_lhack shift register (FSR) that will reset it to the

location in the hop code that corresponds to the target hop. The incoming signal is now

synchronized.
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FIGURE 3.16 Dehopping Circuit

The FSR is an 8 bit device which is constructed using a modulo two addition

between the output and input to create an 8 bit pseudorandom code that is non repeating for

a 255 step cycle. This 8 bit code is sent through a digital to analog converter (DAC) where

it becomes a 255 level voltage hopping signal. This signal is sent to the voltage controlled

oscillator (VCO) which operates around 8.1 GHz to convert the signal that is hopping in

voltage to a signal that is hopping in frequency. This signal is mixed with the received
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signal. Sincethe hopsareperfectly synchronized,the differencefrequencyout of the

mixer will occurat 100MHz andwill bedehopped.

6. Command Check Circuit

Figure 3.17 shows a block diagram of the command check circuit. This circuit

filters out the the command channel.and modulates it to 1.763721 GHz before sending it to

the TT&C package On the telemetry side of the circuit, the telemetry data from the Tr&c

package is modulated to 96.21 MHz and inserted in the received signal. The RCU in the

bus will have an algorithm that is dedicated to the control of the switches in the command

check circuit. This will allow the ground terminals to switch the mode of operation of the

"rq'&C package from the VBWA to the E/C antennas. This switching should take place at

the SHF frequencies so that further modulation is not required.
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FIGURE 3.17 Command Check Circuit

7. Hopping Circuit

Figure 3.18 shows a block diagram of the frequency hopping circuit which is

similar to the dehopping circuit except that synchronization is not necessary. The FSR

simply sends the 8 bit pseudorandom code to the DAC which sends a hopping voltage to

the VCO. The VCO (centered about 4 GHz) sends a frequency hopping signal to the mixer
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where the signal is frequency hopped to 2 GHz bandwidth and upconverted to 20 GHz for

transmission.

VCO I

A

DAC

II!II II
FSR

f •

CLOCK
J

f

FIGURE 3.18 Hopping Circuit
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IV. ORBITAL DYNAMICS

A. SELECTION OF ORBITS

Payload

Orbit T_¢pe

Period

Semimajor Axis

Eccentricit),

Inclination

Ascending Node

Argument of Perigee

AVHRR

Sunsynchronous

101.5 min

EHF

Communications

Molni),a

8hr

7212 km 20,307 km

0.0 0.661

98.75 de_

3:30 PM/8:30 PM

N/A

63.43 deg

N/A

270 deg

TABLE 4. I Summary of Orbital Parameters

1. AVHRR

Orbit choices are naturally driven by the mission. In the case of the AVHRR, the

mission is IR scanning and the sensor is designed to operate at 450 nautical miles altitude.

To make the sensor useful everywhere in the orbit, the altitude has to be constant. These

requirements dictate a circular orbit. Table 4.1 contains values for the period, semimajor

axis, and eccentricity of this orbit. Because the orbit is circular, argument of perigee is

undefined. The desire for global coverage coupled with the low altitude lead to a highly

inclined orbit. Careful selection of the inclination produces a sunsynchronous orbit.

Finally, spacecraft currently performing missions similar to the AVHRR mission locate
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their ascendingnodeswithin a couple of hours of the earth's terminator line (the line which

separates the sunlit side from the dark side). This design follows suit and is within two

and a half hours of the terminator line. This information is also provided in Table 4.1.
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2. EHF

The EHF Communications mission produced an entirely different orbit. The

statement of work required a Molniya type orbit. Guidance from DARPA indicated that at

least tentatively, DARPA was most interested in the 8 hr orbit. Consequently, that is the

orbit that we focused on. Although geosynchronous communications satellites provide

continuous coverage over regions of the earth, their performance degrades at the higher

latitudes. This shortcoming is more noticeable as one moves along the spectrum of radio

frequencies towards higher frequencies. Therefore, we envision our EHF

Communications mission as one that addresses this deficiency in geosynchronous

missions. In order to provide high latitude coverage, we have a high inclination, a very

eccentric orbit, and perigee located at the southern most point in the orbit. The high

eccentricity gives us a longer loiter time over the northern hemisphere. In fact, the satellite

will spend nearly 90% of its time in the northern hemisphere and almost two thirds of its

time at a high enough altitude and latitude to be providing communications service (see the

section on EHF Payload for a specific discussion). Parameters of this orbit are

summarized in Table 4.1. The orbit has a 500 km perigee altitude. The choice of

inclination was based on the critical inclination to remove rotation of the line of apsides.

Such a choice minimizes the effects of perturbations on the orbital elements making the

orbit easier to maintain. Although perigee is at 270 deg, it can just as easily be located at 90

deg if one wants coverage at the extreme southern latitudes. For purposes of this design,

northern hemisphere coverage is assumed. If one wants southern hemisphere coverage

instead, the general conclusions from the northern hemisphere analysis still apply but the

specific points in the orbit where significant events occur are rotated 180 degrees.
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B. ORBIT ANALYSIS

1. AVHRR

The AVHRR orbit analysis focused of the relationship between the satellite and the

sun. This mission uses a sunsynchronous orbit. However, such an orbit does not imply

that the geometry between the satellite and the sun is a constant. Sunsynchronous indicates

that the longitude of the ascending node moves along the earth's equator rather than

remaining fixed in inertial space. The rate of change in the longitude of the ascending node

is such that in the course of one year, the node will travel once around the equator..If the

plane of the equator and the plane of the ecliptic were coplanar, then the sun would remain

in the same relative location with respect to the orbit. Since these planes are not coplanar

the location of the sun depends on the season. The AVHRR orbit analysis was directed at

determining sun angles on the satellite, sun angles on the solar arrays, and eclipse periods.

i_, Sun Angles on the Satellite

The primary motivation for this analysis is to ensure that the placement of the

AVHRR payload on the spacecraft will prevent sunlight from shining in the sensor field of

view and to prevent illumination of the thermal radiator. The basic approach is to define

vectors normal to each of the satellite's faces. These vectors are essentially the roll, pitch,

and yaw axes and their negatives. Another vector is defined to point from the satellite

directly at the sun. The angle of incidence of sunlight striking a satellite face is the angle

between the sun vector and the vector normal to the satellite face. This angle shall be

referred to as the sun angle of a particular face. If the sun angle is zero degrees, then the

sun is shining directly on the satellite face. If the sun angle is greater than 90 degrees, then

the satellite face is oriented away from the sun and has no incident sunlight.

The program developed to perform this investigation propagates the satellite

through one revolution around the earth on the f'trst day of each season. The most extreme
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valuesfor sunanglesarenot guaranteed to occur on any of these four days. However,

these days do illustrate the seasonal variation of the sun angles. Because the duration of

one orbit is 101.5 minutes and the ascending node moves 360 degrees in one year, we

made the simplifying assumption that the orbit is fixed in inertial space for the interval of

time det"med by one orbit. The consequences of this assumption is that the angle between

the sun vector and the vector normal to the orbital plane remains constant. Since the

satellite's pitch axis is parallel to the orbit normal vector, the sun angle on the satellite's

pitch and negative pitch faces remains constant for that orbit. The sun angles on the

remaining four faces vary sinusoidally. All four faces experience the same sun angle

profile with the only difference being a shift in time. Table 4.2 summarizes the results on

all six faces and for all four seasons. Figure 4.1 illustrates how the sun angles on the

satellite faces vary as the satellite moves through one revolution.

Sun Angle on S/C Faces va Orbital Position
(First Day of Winter)
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FIGURE 4.1 First Day of Winter Sun Angles on S/C Faces vs Orbital Position

(8:30 PM Ascending Node)
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Figure 4.1 is for the first day of winter and the orbifs ascending node is at 8:30

PM. The plots for the other seasons are similar in general shape but contain a phase shift

and a change in amplitude. Figure 4.2 examines these changes by plotting the sun angle

profile on the +Roll face for the first day of all four seasons.
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The data in Table 4.2 is for an 8:30 PM ascending node orbit.

First

Day of

Winter

First

Day of

Spring

First

Day of

Summer

First

Day of

Fall

Arg. of

Latitude

(de_)

25

Sun Angle on Face (deg)

+ Pitch - Pitch

141.6

+ Roll

38.4

- Roll

89.2

+ Yaw

I

51.3

- Yaw

141.2 38.8 91.2 88.8 128.7

115 141.2 38.8 51.3 128.7 88.8 91.2

205 141.2 38.8 88.8 91.2 128.7 51.3

295 141.2 38.8 128.7 51.3 91.2 88.8

80 141.6 38.4 51.7 128.4 90.8 89.250

170 141.6 38.4 90.8 89.2 128.4 51.7

260 141.6 38.4 128.4 51.7 89.2 90.8

350 141.6 38.4 89.2 90.8 51.7 128.4

50 131.2 48.8 41.2 138.8 91.6 88.4

140 131.2 48.8 91.6 88.4 138.8 41.2

230 131.2 48.8 138.8 41.2 88.4 91.6

310 131.2 48.8 88.4 91.6 41.2 138.8

80 141.6 38.4 51.7 128.4 90.8 89.250

170 141.6 38.4 90.8 89.2 128.4 51.7

260 141.6 38.4 128.4 51.7 89.2 90.8

350 90.8 51.7 128.4

TABLE 4.2 Sun Angles on Satellite Faces for an 8:30 PM Orbit
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Argument of latitude is the angle from the ascending node to the satellite position

measured in the direction of satellite motion. Table 4.2 lists four values for argument of

latitude for each of the four orbits. The values listed in the table are the locations in the

orbit where one face experiences a minimum sun angle for that orbit and its opposite face

experiences a maximum sun angle. Notice that the orbit locations of the minimum and

maximum sun angles vary with season as well as the values of the sun angles. This

behavior is because the orbit does not maintain constant geometry with respect to the sun.

The orbit is precessing around the earth's spin axis while the motion of the sun with respect

to the earth is inclined 23.5 degrees. This disparity is irrelevant at the equinoxes when the

earth's spin axis is perpendicular to the sun vector which lies in the plane of the equator.

Notice that the table entries are identical for the equinoxes. In addition, the plots for Spring

and Fall in Figure 4.2 lie one on top of the other. The most surprising data is that at the

solstices. Because the orbit is sunsynchronous and retrograde, the orbit plane is closer to

being parallel with the plane of the ecliptic during summer than during winter. That

geometry makes the minimum and maximum sun angles more extreme in summer. One

might expect that winter would represent the other end of the spectrum. However, the

values for winter are very nearly the same as those for the equinoxes. This result is caused

by a combination of the sunsynchronous nature of the orbit and the ascending node's

displacement away from the terminator line. If the displacement had been zero, then winter

would represent the other extreme.
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Season

First

Day of

Winter

First

Day of

Spring

First

Day of

Summer

First

Day of

Fall

Arg. of

Latitude

(deg)

65

155

245

335

10

100

+ Pitch

280

141.2

141.2

141.2

141.2

141.6

141.6

Sun

- Pitch

38.8

38.8

38.8

38.8

38.4

38.4

Angle on Face (deg)

38.4

+ RoU

128.7

88.8

51.3

91.2

89.3

128.4

- Roll

51.3

91.2

128.7

88.8

90.7

51.7

+ Yaw

88.8

51.3

91.2

128.8

128.4

90.7

- Yaw

91.2

128.8

88.8

51.3

51.7

89.3

190 141.6 38.4 90.7 89.3 51.7 128.4

280 141.6 38.4 51.7 128.4 89.3 90.7

40 131.2 48.8 88.4 91.6 138.8 41.2

130 131.2 48.8 138.8 41.2 91.6 88.4

220 131.2 48.8 91.6 88.4 41.2 138.8

310 131.2 48.8 41.2 138.8 88.4 91.6

10 141.6 38.4 89.3 90.7 128.4 51.7

100 141.6 38.4 128.4 51.7 90.7 89.3

190 141.6 38.4 90.7 89.3 51.7 128.4

51.7 128.4 89.3 90.7

TABLE 4.3 Sun Angles on Satellite Faces for a 3:30 PM Orbit
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Table 4.3 presentsthe same information as Table 4.2, but the orbit under

consideration has its ascending node at 3:30 PM. The two possible locations for the

ascending node are symmetrical with respect to the terminator line. This geometry causes

the values for the sun angles to be the same regardless of which of the ascending nodes is

being used. The orbit locations for the specific sun angles vary but not the values for the

sun angles. Close comparison of the values in the two tables will turn up some differences

in the tenth's digit. One can attribute this to the method for generating the data rather than

the physics of the problem. The data was generated by propagating the satellite through its

orbit in five degree steps. The sun angles are only available at these points. Rerunning the

program with a finer resolution should produce identical sun angles for orbits that are

symmetrical about the terminator line.

b. Sun Angles on the Solar Arrays

The next area of investigation concerns the sun angles on the solar arrays. The

solar arrays can rotate freely about the roll axis. To obtain the maximum amount of power

out of the solar arrays, they need to rotate in a manner that minimizes their sun angles.

These calculations were performed by the same program as was used to generate the sun

angles in the previous section. At each evaluated point in the orbit, the same sun vector is

still valid. That sun vector and the satellite roll axis define a plane. Let's refer to that plane

as the sun vector roll axis plane (SVRA Plane). The solar arrays have a normal vector

hereafter referred to as the solar array normal vector (SAN Vector). The sun angle on the

solar arrays is minimized when the SAN Vector lies in the SVRA Plane. A vector normal

to this plane is easily obtained by crossing the +Roll Axis Vector with the Sun Vector.

SVRA Normal =( +Roll Axis) X (Sun Vector)

These vectors and the other elements of the solar array sun angle geometry are presented in

Figure 4.3.
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Thetwo anglesthataredesiredare1) theanglethatthesolararraysshouldrotate to

bring the SAN Vector into the SVRA Plane and 2) the sun angle on the solar arrays that

results from that rotation. The angle that the solar arrays should rotate is the angle between

the SAN Vector and its projection in the SVILA Plane. This angle is complementary with

the angle between the SAN Vector and the SVRA Normal Vector. Once the rotation angle

is found, the program rotates the solar arrays and then measures the resulting sun angle.

This angle is the minimum sun angle possible for that orbit location. Notice that this angle

is smaller than the original sun angle on the unrotated solar arrays. Two situations of

interest can be seen from Figure 4.3. The fast is when the SAN Vector is in the SVRA

Plane to begin with. Under these circumstances the rotation angle will be zero degrees.

The second interesting situation is when the +Roll Axis is perpendicular to the Sun Vector.

When that happens, it is possible to rotate the solar arrays so that the resulting sun angle is

zero degrees. Because the angle between Sun Vector and the +Roll Axis is constantly

changing as the satellite moves through one orbit, the solar array rotation angle will change

as well. The profile of how the solar array rotation angle changes is illustrated in Figure

4.4.
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FIGURE 4.3 Solar Array Illumination Geometry
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FIGURE 4.4 Solar Array Rotation Angle vs Orbital Position and Season

As one can see in Figure 4.4, for every orbit, there are two locations in the orbit

where the solar array rotation angle is zero. These are the locations where the SAN Vector

is already in the SVRA Plane. These locations are on opposite sides of a given orbit.

Furthermore, these locations are not fixed with respect to the equator. They occur in

different places depending on the time of year. This necessitates at least a phase shift in

rotation angle profiles. There is also a change in amplitude that is seasonally dependent.

All of the plots are centered with respect to zero rotation angle. The reference orientation

for zero rotation is when the SAN Vector is parallel to the Negative Pitch Axis. Positive

rotation is defined by the right hand rule and the +Roll Axis. The lack of a constant

rotation angle profile dictates either a sensor on board the solar arrays to minimize the sun

angle or regular contact with the satellite to upload a new rotation angle profile before the

current one reduces solar array output beyond an acceptable level. Once again, the plots for
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theequinoxesaxe identical. The season with the largest rotation angles is Summer. This is

still because that is the season when the orbital plane is most nearly parallel to the plane of

the ecliptic. Although there are still two locations requiring no rotation, the orbital

positions 90 degrees away are worse than for any other season.

Figure 4.5 shows what the resulting sun angles are on the solar arrays if the

rotation profiles from Figure 4.4 are used. As before, Spring and Fall produce the same

plot and Summer has the largest excursion away from zero. Each orbit has two locations

where the resulting sun angle is zero degrees. The only circumstances that permit this

situation are when the Sun Vector and +Roll Axis are perpendicular to each other.

Referring back to Figure 4.2 confirms that the orbital positions that produce a sun angle of

90 degrees on the +Roll Axis are the same orbital positions that have a rotation angle of

zero for the solar arrays. Furthermore, because the plots in Figure 4.2 are centered

vertically about 90 degrees, every orbit, not just the four representing the f'n'st day of each

season, will have two points where the angle of incidence after rotation is zero. Of course,

one of those points may be in eclipse, but that issue is discussed later. When comparing

Figures 4.4 and 4.5, it is also interesting to note that the points in the orbit requiring zero

rotation of the solar arrays are also the points with the worst sun angles for that orbit. At

these points, there is not any rotation about the +Roll Axis that can improve the sun angle.

Conversely, the points that require the most rotation correspond to the locations with a

resulting sun angle of zero degrees. Finally, the values for maximum rotation in a given

orbit and worst case solar array sun angle in the same orbit are equal to each other but are

staggered 90 degrees apart. A quick check back in Table 4.2 reveals that the sun angle on

the -Pitch Face is also the same value as the maximum rotation angle and the worst case

solar array sun angle for a given day.

These scenarios can be summarized by defining a new plane. This plane contains

the Sun Vector and the Pitch Axis. Because the Pitch Axis is assumed to remain fixed in

inertial space during one orbit, this plane is also fixed. The Roll Axis completes a full 360
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degreerotation around the Pitch Axis during one orbit. Wheneverthe Roll Axis is

perpendicularto SunVector Pitch Axis Plane,the solar array rotation anglewill be a

maximumandtheresultingsolararraysunanglewill bezero. WhenevertheRoll Axis is

in theSunVectorPitchAxis Plane,rotationof thesolararraysawayfrom their reference

only makesthesunangleworse. Therotationangleis zerobut thesolararraysunangles

areamaximum. Thisconsequenceis usedin developingthenextprogramto investigate

theorbit.

Solar Array Sun Angle
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FIGURE 4.5 Solar Array Sun Angle vs Orbital Position and Season

To ensure that the solar arrays are sized large enough, the absolute worst case sun

angle on the solar arrays is required. To provide this information, a different program had

to be developed. This program propagates the earth around the sun and the orbit's

ascending node around the earth's equator. For each point in the earth's orbit, the worst

case solar array sun angle is tabulated. As mentioned above, this worst case angle is the
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sameas the sun angle on the -Pitch Axis. This avoids the need to propagate the satellite

through its orbit at each of the locations of the earth. Figure 4.6 summarizes the results. It

is essentially a plot of the maximum values from the four plots in Figure 4.5 plus

intermediate values for days other than the first day of each season. The data still

represents the 8:30 PM ascending node orbit. The data points are in five degree increments

of the earth's orbit around the sun.

Worst Case Solar Array Sun Angles

vs Time of Year
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FIGURE 4.6 Worst Case Solar Array Sun Angles vs Time of Year

Figure 4.6 illustrates that for solar array sizing purposes, the worst case sun angles

occur slightly before the fn'st day of summer. However, the value for the worst case angle

is only 0.4 degrees more than the value on the first day of summer.
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c. Eclit_se Periods

Eclipse duration influences design of the satellite most directly in terms of sizing the

batteries and the solar arrays. The same program that calculated the worst case solar array

sun angles also calculated the length of the eclipses. The program propagates the satellite

through an orbit. At each step, the program looks to see if the satellite is over the sunlit

side or the dark side of the earth. This is determined by looking at the angle between the

Sun Vector and the Satellite Position Vector. If this angle is less than 90 degrees the

satellite is above the sunlit side. If the angle is greater than 90 degrees, the satellite is above

the dark side. If the satellite is over the dark side, it is in eclipse only if the component of

the Position Vector perpendicular to the Sun Vector is less than the radius of the earth.

This model assumes that the earth's shadow is a uniform cylinder parallel to the Sun

Vector. By keeping track of when the satellite enters eclipse as well as when it exits, the

eclipse duration is found. The program then propagates the earth one step in its orbit

around the sun and performs the same series of eclipse calculations for this new geometry.

Results for the 8:30 PM ascending node orbit are in Figure 4.7.

Eclipse Duration vs Time of Year
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FIGURE 4.7 Eclipse Duration vs Time of Year
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These results were obtained by stepping the satellite through its orbit in 0.5 degree

increments. This produces a potential error in the predicted duration of just under the

amount of time required to move through one degree in the orbit. This value is less than 20

seconds. Smaller step sizes should smooth out the curve. Figure 4.8 shows how the

location of the eclipse in the satellite's orbit varies through the year. This is attributable to

the apparent motion of the sun 23.5 degrees above and below the equator.

Location of Eclipse in Orbit vs Time of Year
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2. EHF

The analysis of the EHF Communications orbit does not require the same level of

analysis as the AVHRR orbit. The advantage that the EHF mission enjoys is that the

satellite is free to rotate around the Yaw Axis. This being the case, it is possible for the

satellite to position its solar arrays with zero angle of incidence everywhere in the orbit. An

analysis that has not been performed that probably should be done is to see what that angle

of rotation around the Yaw Axis should be as a function of where the satellite is in its orbit.

This analysis would be analogous to the solar array rotation profile for the AVHRR

mission. The analysis that was done was to find the worst case eclipse and to find the time

spent in specific altitude windows.

a, Worst Case Eclipse

Unlike the circular orbit of the AVHRR, the EHF mission's elliptical orbit means

that the satellite travels at a nonconstant angular rate. The worst case eclipse in terms of

duration is when the portion of the orbit in eclipse passes directly through the center of the

earth's shadow cylinder. This condition is a function of longitude of the ascending node.

Since we have no way of knowing in advance where a user will want the orbit placed, we

must assume that our orbit may pass through the center of the cylinder. Another necessary

condition for the worst possible eclipse is when the eclipse is centered around apogee. We

can never create that geometry because we have assumed an inclination of 63.43 degrees

and an argument of perigee of 270 degrees. Our worst case is when the portion of the orbit

in eclipse is as close to apogee as the geometry will allow. With perigee at the southern

most point in the orbit, the worst case scenario is created on the In'st day of winter. The

center of the eclipse occurs 113.5 degrees past perigee. The shadow cylinder cannot be

any farther north because the sun cannot be any farther south.

72



Theprogramusesaniterativeapproach to find the values for true anomaly which

correspond to eclipse entry and eclipse exit. At both of these points, the component of the

satellite position vector perpendicular to the sun line is equal to the radius of the earth.

Time spent in eclipse is found by converting the mac anomalies of eclipse entry and eclipse

exit into eccentric anomalies and then using Kepler's equation. Specific values for the EHF

orbit are in Table 4.4.

True Anomaly at Eclipse Ent O, (deg)

True Anomaly at Eclipse Exit (des)

Eclipse Duration (rain)

TABLE 4.4

70.587

131.715

52.079

Eclipse Duration for EHF Mission

b. Altitude as a Function of Time

The principle motivation behind this analysis is to permit an estimate of the radiation

environment on the solar arrays. This analysis is necessary because the radiation

environment is dependent on altitude and on the amount of time the spacecraft spends at

that altitude. This program simply accepts an altitude step size from the user and then

breaks the orbit from perigee to apogee into segments. Each segment, with the possible

exception of the first and last, represents a change in altitude specified by the user. Similar

to the eclipse calculations, these satellite position radii can be converted into Irue anomaly,

eccentric anomaly, and a time from a reference. Results are depicted in Figure 4.9.

73



Time Since Perigee vs True Anomaly
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FIGURE 4.9 Time Since Perigee vs True Anomaly

As the slope of the curve in Figure 4.9 increases, so does the time spent near that

altitude. Obviously, near apogee represents the longest loiter time. Since the figure is valid

from perigee to apogee, total time spent in an altitude window during one orbit is twice the

value off of the graph. Time spent in an altitude window during one day is six times the

graph value, and so on.

C. ORBIT MAINTENANCE

Orbit selection for both missions was done so as to eliminate the orbit maintenance

requirements. The AVHRR mission is patterned after an existing system. The Defense

Meteorological Satellite System (DMSP) uses the same orbit as the AVI-IRR mission.

DMSP has several payloads, one of which is very similar to AVHRR. DMSP performs no

orbit maintenance during its lifetime. Because any changes in the orbit as a result of natural
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perturbationsseemto beacceptableto thepresentDMSP user community, the AVHRR

mission will also include no orbit maintenance.

The EHF communications mission has an inclination of 63.435 degrees. This

value is the critical inclination that prevents the line of apsides from changing. Perigee is

located at the orbit's southern most point to give good coverage in the northern hemisphere.

Perturbation analysis was performed using zonal harmonics J2 through J7. The results of

this analysis indicate that the orbit changes very little over the course of a satellite's lifetime.

Perigee will rotate completely around the orbit in about 500 years. Our mission design life

is only three years. During the mission lifetime, perigee win move less than 2.5 degrees.

The change in inclination and eccentricity are likewise very small during a satellite's

lifetime. Both of these changes are periodic. Results are summarized in Table 4.5. The

table shows how the values are altered if inclination is within 0.1 degrees of nominal. The

delta columns show how far inclination and eccentricity will change from their original

values. Orbit maintenance fuel is not needed to counter any of these perturbations.

Inclination Period (years)

243.2

Ai (deg)

0.2

Ae

63.335 0.006

63.435 377.4 0.3 0.002

63.535 262.9 0.15 0.004

TABLE 4.5 Perturbations on EHF Mission Orbit
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V. SUBSYSTEMS

A. ELECTRICAL POWER SUBSYSTEM

]. Functional Description

The electrical power subsystem (EPS) will provide power to the spacecraft for the

AVHRR and EI-IF payloads. The AVHRR payload will require continuous power during

all phases of the mission, while the EHF communications equipment requires operating

power when the spacecraft is 20 ° above the horizon and housekeeping power during the

entire orbit. In addition to supplying power for the payloads, the EPS will be required to

support electrical accessories such as the power control electronics; telemetry, tracking, and

control (TI'&C); sensors; and propulsion systems.

In general, the electrical subsystem will consist of solar panels of silicon

photovohaic cells and Ni-H2 batteries. The spacecraft bus will operate off a single 28 volt

bus. Power summaries of each configuration are listed in Table 5.1.

ELEMENT AVHRR (W) EHF (W)

MPS Bus Subtotal 166.4 114.8

Mission Instruments 28.0 115.0

MMS Harness Loss 4.0 4.0

S),stem Reserve 4.0 4.0

Satellite Total 201.8 237.8

With cosine effect 313.9 n/a

TABLE 5.1 System Power Summaries (Normal Operations)
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a. Solar Array Desire1

The MPS bus was designed to have two symmetric solar arrays of either two or

three panels each. The Pegasus shroud will only be able to accommodate two panels per

side while the Taurus shroud will accommodate three. The AVHRR and EHF

configurations require two solar arrays of two panels each. The solar arrays on the EHF

payload will be sun tracking to maintain panel orientation perpendicular to the sun's rays.

This is accomplished through freedom of movement about the longitudinal axis of the

arrays and through satellite rotation about the yaw axis. The AVHRR solar panels will, as

nearly as possible, be oriented perpendicular to the sun's rays. The AVHRR operational

requirements do not allow for the rotation of the spacecraft about the yaw axis. Therefore

some loss of potential power is introduced clue to the effect of the angle of incidence which

reaches a maximum of 50 °.

Silicon cells were chosen for cost and reliability, the cells selected were the same as

those used in INTELSAT VI and are described in Table 5.2.
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CHARACTERISTICS

Power B0L (28°C) (mW)

Power EOL (28oC) (roW)
BOL

Imp (A)

Vmp (V)
Isc (A)
Vo_ (V)

Size (cm)

Thickness (cm)

Material

Base Resistivity

_-ctrdtype

Front junction depth (pm)
Back surface field

Back surface reflector

Contact metallization

Front contact width (cm)

Antireflective coatin_
Cover type

Cover thickness (cm)
Cover adhesive

K7 SILICON CELL

307.8

230.8

0.644
0.478
0.6887
0.590
2.5 x 6.2
0.02

Si
i

10/N/P

0.2

Yes

Yes

TiPdA 6
0.06

TiOxA1203
crux microsheet with

antireflective coatin_
0.021

DC 93-500

Cover front surface Textured

TABLE 5.2 Solar Cell Characteristics

Using the data from Table 5.1 and the cell characteristics from Table 5.2, the actual

array panel area was determined and the results are summarized in Table 5.3. Supporting

calculations can be found in Appendix B.

AVHRR EHF

Number cells series 22 22

Number cells parallel 68 80

Total number cells 1496 1760

Area needed (ft 2) 24.9 29.3
I I II II

Area available (ft 2) 30.2 30.2

TABLE 5.3 Solar Array Summaries
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]_, Battery. Design

The battery for eclipse power is the same as selected for HILACS, that is, 12 amp

hour nickel hydrogen battery manufactured by Eagle Picher. The battery are made in a two

cell common pressure vessel (CPV). Dimensions of each CPV are approximately 3.5

inches in diameter and 6 inches in height. Utilizing a 28 volt bus with constant current

charge, the number of CPV cells is limited to eight. NiH2 battery were chosen because of

the high number of charge/discharge cycles the bus may experience. The AVHRR payload

because of its 450 NM low earth orbit (LEO), for example, will experience over 15,000

cycles in its three year design life. The number of charge/discharge cycle this El-IF payload

will experience on the other hand may only be 1000. Because the bus was designed to

accommodate these and other payloads in various orbits, the battery recharge requirements

will vary. For this reason, the recharge circuitry must have the capability to be selectable or

be comprised of modular components.

The AVHRR payload configuration draws 100.6 Watts during eclipse. Because

this eclipse is roughly one third of the orbit, the recharge rate must be high enough to

replenish the amount of power removed during the sunlight period. For a low earth orbit

satellite with numerous charge and discharge cycles, an additional 10% on top of that

power removed should also be replaced. For example, if 10 amps are drawn from the

battery for 1 hour, the recharge cycle must provide an equivalent 11 amp hour for the

charge period. Knowing the duration of the sunlight period and the power removed

determines the recharging rate. Assuming that 90% of the sunlight period was used to

recharge the battery, the AVHRR charge rate was chosen to be C/4, this is only slightly

below the maximum recommended charge rate of C/3, where C is the battery capacity in

amp-hours.
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The EHF payload utilizes only 80.7 Watts during eclipse. Because of the longer

sunlight periods and smaller power drawn, the charging rate of this configuration is only

C/10. There are seasons where the Molniya type orbit would have no eclipse and then the

battery would be trickle charged.

AVHRR EHF

Charge required 76.8 W 30.7 W

Charging rate C/4 C/10

Charge time 59 min 6.5 hrs

Available sun 64 min 7.1 hrs
i

Battery capacity 12 A-hr 12 A-hr

TABLE 5.4 Battery Summary

Radiation effects and shielding requirements were examined for the AVHRR's

circular orbit and the EHF's eight hour Molniya orbit. The degradation for the AVHRR

configuration was based on an annual equivalent of 1 MeV electron fluence assuming solar

maximum for the three year mission. The eight hour Molniya orbit posed significant

challenges to the analysis of the radiation effects. Apogee for this orbit extended into the

Van Allen belts exposing the solar cells to large fluences. Appendix B lists the equivalent 1

MeV fluences in five minute increments of orbital time for this orbit. Total fluence per

orbit, per year, and three year lifetime were derived and the impact on the solar cells

calculated. The radiation effect on both orbits are summarized in Table 5.5.
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Trappedelectrons

Trapped protons

Totals
i

AVHRR EHF

Isc Voc, Pmax Isc Voc, Pmax

4.59E+ 11 4.59E+ 11 3.18E+ 13 3.18E+ 13

8.64E+12 1.47E+13 3.82E+15 1.59E+15

9.10E+12 1.52E+13 3.85E+15 1.62E+15

TABLE 5.5 Radiation Annual Huence Summary

Power control electronics will maintain bus voltage at 28 volts. The bus will be

fully regulated by employing a shunt regulator for periods of solar array operations and will

utilize a boost regulator during periods of battery operations. This arrangement is

discussed in detail in the HILACS project report.

2. Detailed Mass Summary

A detailed mass summary of the Electrical Power Subsystem components is listed

in Table 5.6.

Components Mass (kg)

Array Structural and Cells 13.00

Batteries 7.12

Wire Harness 3.00

Mechanical Inte[Tation

Solar Array Drive Electronics

Solar Array Drive Motors

Power Electronics

2.00

1.00

8.00

2.00

Shunt Resistor Bank 0.94

Total 37.06

TABLE 5.6 Detailed Mass Summary of EPS
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B. ATTITUDE CONTROL SUBSYSTEM

I. Attitude Determination and Control System

The function of the attitude determination and control system, (ADCS), is to

provide precise attitude pointing for the AVI-IRR or similar payload in a low (450 NMI)

circular orbit, and a less accurate determination for the EHF or other communications

payload in a Molniya-type orbit. This dual objective is met by using two subsystems

for the different requirements, the Precision Sensor Subsystem, PSS, and the Basic

Sensor Subsystem or BSS. The PSS and BSS are used for precise positioning, whereas

the BSS alone can be used for less stringent requirements. Both subsystems consists of

sensors to determine attitude, an on-board processor for control, and an inertial reference

system consisting of an assembly of 3 orthogonal gyros, (GA). The BSS and PSS share

the same components where possible. The Attitude Control Subsystem ,(ACS), is driven

by either the PSS or BSS and consists of 3 primary reaction wheel assemblies, (RWA),

with a fourth skewed wheel to provide redundancy, and two magnetic torque rods,

(MTR), for momentum dumping. The six 0.2 lb thrusters can be utilized for momentum

dumping in case of failure of the MTR's or if excessive momentum buildup occurs. The

two subsystems are described below.

a. Precision Sensor Subsystem

The Precision Sensor Subsystem relies primarily on a Celestial Sensor Assembly,

(CSA), 'for attitude determination. Figure 5.1 provides a functional block diagram of the

system. The CSA is a strap-down star mapper with a 10.4 degree field of view. The

CSA is the same sensor used aboard the DMSP Block 5D-3 satellite, (ref DMSP). The

star sensor measures star transits across a detector and provides an input to the attitude

control computer, (ACC). The user will be required to uplink to the satellite,

approximately once per day, the 80 brightest stars that will be in view of the CSA. The

ACC also receives input from the GA and an on-board GPS receiver. The ACC uses the
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b. Basic Sensor System

The Basic Sensor Subsystem consists of a conical scanning earth sensor, (ES), a

digital sun sensor, (DS), the GA, RWAs, ACC, GPS receiver, and MTRs. A scanning ES

is required by the great range of possible altitudes that the satellite may achieve. The ES

scans the 14 to 16 micrometer infrared radiance profile of the earth to determine pitch and

roll error, while the DS determines the angle between the pitch axis and the sun. This

information together with the ephemeris data from the ACC and GPS receiver provides

yaw error. The BSS can provide better than 0.5 degree accuracy in each of the three axis.

Figure 5.2 is a functional block diagram of the subsystem.

BSS
r ............

'f .._ Digital Sun

Sun Image ,i "- _Sens°r J. I

s+oo,o0

GPS Signal _ GPS Receiver , i=
t

t -- -- I

To ACS

i

; _ Wheel Torques
I

Attitude ' _- Magnetic Coils
Control

I

Computer , Wheel Speeds
I

' _ Thrusters
I

I

I

I

I

I

FIGURE 5.2 Functional Diagram of Basic Sensor Subsystem
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c, Attitude Control Subsystem

The Attitude Control Subsystem, (ACS), is driven by the output of the ACC. The

ACC sends commands to the RWAs to correct attitude errors. The RWAs' input to the

ACC is the load current and wheel speed. The current is used to determine if an overload

condition exists in which case the ACC shuts down the wheel and starts the backup RWA.

The wheel speed is used as feedback and to determine if momentum dumping is required.

When the momentum reaches the maximum for the wheel, the torque coils are commanded

on to dump the excess momentum. In case of excessive rate buildup, as determined by

differentiators in the circuitry, thrusters are fired to slow the rate to within acceptable limits.

The block diagram for the ACS is given below.

To Attitude Control

Computer

Thrust

Commands

Speed "_

Wheel Torque
Commands

Current

Desaturation

Commands

Attitude Control System

Thruster

Reaction Wheel
Assembly

(RWA)

I

- Torque Rod

I
I
I

.._. Output
Torques

I
I
I

FIGURE 5.3 Functional Diagram of Attitude Control Subsystem
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2. Design Considerations

For the first order accurate approximation, the spacecraft is modeled as a rigid body

with nonrotating and rigid solar arrays. During the on-orbit mode, the disturbance torques

are solar, gravity gradient, magnetic, and aerodynamic. The calculations, programs and

resulting wheel speeds and attitude errors are given in Appendix C. The yaw motion of the

satellite in the Molniya-type orbit is modeled as in HILACS, (see ref HILACS). The

attitude control of the meteorological payload is treated in this report.

During the acquisition mode, the sun sensor on the anti-earth face acquires the sun.

After the ACC commands the RWAs accordingly, the earth is acquired and the BSS begins

operation. This is accomplished as follows: f'trst, the RWAs are commanded to null the

yaw rate, this fixes the yaw axis in inertial space in an unknown attitude, next, the

spacecraft begins a slow rotation about the pitch axis until a sun observation occurs. If a

sun observation does not occur in 5 revolutions, the pitch rate is nulled and the spacecraft

begins a rotation about the roll axis. Utilizing this sun line and GPS receiver data, attitude

is determined and error correction by the ACC commences. Once the pitch, yaw, and roll

rates are nulled, the solar arrays are deployed. After sun and earth sensor updates to the

GA occurs, the system is switched over to the PSS if precision is required, otherwise the

BSS continues to control attitude. In the EHF payload the PSS is not available and the

BSS will be the on-orbit mode.

3. Basic and Precision Subsystem Summary

The following is a break-down of the components of the BSS and the PSS. The

AVHRR payload will require both the BSS and the PSS while the EHF payload will

require only the BSS.
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Component AVHRR EHF PWR Manufacturer

Ov)

Attit. Ctrl.Computer

Roll RWA

Pitch RWA

Yaw RWA
Hi

Backup RWA

Spring Restraing Gyro

Assembly

Earth Sensor

Sun Sensor North Face

Sun Sensor Anti-Earth
Face

Roll-Yaw Torque Rods

Pitch Torque Rods

GPS Receiver

(k[_)

2.5

2.4

2.4

2.4

(k_)

2.5

2.4

2.4

2.4

18

18

18

2.4 2.4 N/A

1.2

3.77

1.2

3.77

0.04

0.04

0.40

0.04

0.04

0.40

19

4

0.6

Barnes

Honeywell

Honeywell

Honeywell

Hone_veU

INTEL_AT V

Hcrita[e

Barnes

Adcole

Adcole

Ithaco

0.4 0.4 0.6 Ithaco

3.6 3.6 4 Motorola

Celestial Sensor 3.17 N/A 2.15 DMSP Heritage

Total 24.72 21.55 92.35

Note: the EHF payload will rex

o

aire 2.15 W less of power than the AVHRR payload.

TABLE 5.7 Basic and Precision Subsystem Summary

System Parameters

The system parameters are computed in Appendix C. The RWAs are mounted so

as to provide torque along each of the spacecraft's principle axis of inertia with the backup

wheel mounted to provide torque equally along each of the principle axes. The worst case

disturbance torque in the normal mode of operations is the interaction of the magnetic

torque rods with the Earth's magnetic field during desaturation of the RWAs. The RWA

parameters for the AVHRR payload are given below:
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Roll Pitch Yaw

Momentum 1.9 Nms 1.9 Nms 1.9 Nms
Storage

Gain 0.885Nm/rad 0.710 Nm/rad 0.621 Nm/rad

Time Constant 4 sec 8 sec 8 sec

TABLE 5.8 System Constants

5. System Performance

The wheels will be desaturated at approximately 100 RPM. The torque rods will

provide a 10 AMP-m 2 magnetic dipole which will result in 0.006 N-m of torque over the

earth's geomagnetic poles for the 450 nmi altitude of the circular orbit. The pitch torque

rod will be energized within +/- 30 deg of the north and south geomagnetic poles and

the roll-yaw rod when within +/- 30 deg of the geomagnetic equator. The desaturation

scheme for the Molniya-type orbit is dependent upon the longitude of the ascending node.

Basically, the roll-yaw rod will be used near the equatorial crossing and the pitch rod

near perigee. As can be seen from the plot of the wheel speeds in Appendix C, the pitch

wheel will require periodic desaturation. The roll - yaw wheels should rarely, if ever,

require desaturation due to the cyclic nature of the disturbance torques. The satellite will

maintain a 0.01 deg pointing accuracy during desaturation.
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C. THERMAL CONTROL SUBSYSTEM

Thermal analysis of a spacecraft requires precise information concerning equipment

placement, operating temperature limits, structural materials, and amount of power

dissipated by the equipment. The conceptual EHF and AVHRR payloads for the MPS bus

proposed in this study will not necessarily determine the final configuration. Because of

this, the analysis performed on these configurations will be considered as an initial analysis

with the understanding that as more detailed information and configuration revisions are

incorporated, the analysis will be updated.

1. Design Considerations

The thermal control of each configuration is to be done utilizing passive techniques.

The requirements to conserve mass in the design of the spacecraft were such that if passive

techniques could be employed the impact on the mass of the spacecraft would be minimal.

Therefore the goal is to use optical solar reflectors (OSR's), insulation, conductive transfer,

and paints and coatings to regulate the temperature of the equipment.

The typical equipment operating limits listed in Table 5.9 were used as guidelines in

the thermal analysis procedures:
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Subsystem/Equipment

Communications

Receiver

Inputmultiplex

Output multi_)lex
TWTA

Antenna

Electricpower

Solararraywing

Batter_

Shunt assembl_,
Attitudecontrol

Earth/sun sensor

An_ular rateassembly
Momentum wheel

Propulsion

Solid apol[ee motor

Propellant tank

Thruster catalyst bed
Structure

Pyrotechnic mechanism

Separation clamp

Thermal Design Temperature

Umi f C),Min/Max
Nonol_rating/Tum-

on

-301+55

-30/+55

-30/+55

-30/+55

-170/+90

-160/+80

-10/+25

-45/+65

-30/+55

-30/+55

Operating

+10/+45

- 10/+30
-10/+40

-10/+55

-170/+90

- 160/+80

0/+25

-45/+65

-30/+50

+1/+55

-15/+55 +1/+45

+5/+35
+ 10/+50 +10/+50

+10/+120 +10/+120

- 170/+55 - 115/+55

-40/+40 -15/+40

TABLE 5.9 Typical Equipment Temperature Limits

2. Optical Solar Radiator Sizing

Based on the power summaries of the spacecraft an initial analysis was conducted

to determine the approximate area required to radiate the thermal energy generated. The

thermal energy dissipated by the EHF payload was estimated to be 148 Watts and for the

AVHRR payload, 115 Watts. It is felt that these estimates are conservative and would

reflect lower temperatures than might actually be encountered. Because space is such a

good heat sink, any additional thermal load could be removed by limiting the insulation

and/or altering the surface coatings.

90



where

The heat balance equation is:

e o T 411 A = as A S sin(0) + P

E = emiaance of the radiator (0.8)

o = Stefan-Boltzmann constant

11= efficiency

A = area of the radiator

T = maximum desired operating temperature (310 K)

as = solar absorptance EOL (0.12)

S = solar intensity at winter solstice (1397 W/m 2)

0 = solar aspect angle (23.5 °)

P = thermal load to be dissipated in Watts

The area required for the radiator for the EHF configuration is 744 in 2 and for the AVHRR

configuration it is 573.5 in 2. It should be noted that the AVHRR assembly comes with

approximately 300 in 2 in OSR's installed.

3. Solar Array Temperature

The solar arrays of the EHF configuration will remain perpendicular to the solar

flux. The AVHRR solar arrays will, as nearly as possible, be perpendicular to the solar

flux. The positioning of the EHF solar arrays is accomplished by rotation about the roll

axis by the solar array drive motors and about the yaw axis by attitude control of the

spacecraft. The AVHRR solar array, due to equipment requirements, only has rotation

about the roll axis by use of the solar array drive motors. This introduces some loss in

power but is compensated for in the sizing of the arrays. The greatest angular displacement

is approximately 50 ° inclination from perpendicular.
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where

Theeffectivesolarabsorptance(OtsE)is:

rISE = aS - Fp T]

aS = average solarcellarrayabsorptance(0.8)

Fp = solarcellpacking factor(0.95)

11= solarcelloperatingefficiency

The steadystateoperatingtemperature(Top)of the solararrayisgiven by:

To_= [ _-_A_S___os(_____)_] ,;_(c_ATe+EBAB)o

where

AF = array front side area (30.2 ft 2)

AB = array back side area (30.2 ft 2)

eF = emittance of array front side (0.8)

tB = emittance of array back side (0.7)

S = solar constant

c = Stefan-Boltzmann constant

a = angle of incidence of sunlight

The operating temperatures of each of the solar arrays are summarized as follows:

Top EHF AVHRR

Summer Solstice 45.3 ° C 12 ° C

Winter Solstice 50.4 ° C 34.6 ° C

TABLE 5.10 Solar Array Operating Temperatures
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4. Thermal Analysis Using PC-ITAS

The Integrated Thermal Analysis System for personal computers (PC-ITAS) is a

menu driven software package produced by ANALYTIX Corporation. The thermal

analyzer has the ability to accept various inputs concerning the spacecraft. Among these

inputs arc spacecraft configuration, operations, and orbital parameters. After entering this

data the analyzer will generate steady state or transient output temperatures. It can be used

to rapidly analyze changes in configuration or material properties during the design phase.

PC-ITAS allows the user to represent the spacecraft with a model. The model

building menu has various geometric shapes which can be dimensioned to satisfy any

requirements. Each geometric shape will constitute one or more surfaces. The software

limits the user to 550 surfaces although expanded versions are available. Caution must be

exercised in choosing geometries as the more surfaces used, the more memory and

computer running time are needed. It was determined that, for the computer system

currently in use by the design team, approximately 165 surfaces could be generated for

analysis without any overflow problems. Because this is a preliminary design analysis this

did not pose a significant problem. Some equipment was not modelled in detail due to this

limitation so there was a trade off between computer capability and depth of analysis. To

get an accurate, in depth analysis would require a final design and complete thermal

characteristics of each piece of equipment.

Each surface constitutes a node in the thermal analysis phase. A box, for example,

would have six surfaces therefore it has six nodes. The following tables outline the

components modelled and the geometric shapes selected to represent them, as well as the

number of each nodes assigned to that component.
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Component
MPS Bus

Power control
Batteries

Attitude control
Fuel tank

AVHRR

RTU
RCU

OSR shield

AVHRR side panels (2)
AVI-LRR OSR's

Geometric Model Assigned Nodes
5 sided box 1 - 5

Box 6 - 11

Box 12 17

Box

18 sided sphere
5 sided box

Box
Box

Polygon

Polygon
Polygon

18 - 23

24 - 41

42 - 46

47 - 52

53 - 58
59

60,61
i

62

Bus OSR's

Yaw RWA

Pitch RWA
Roll RWA

MPS Bus south panel

Solar array drive motor - east
Solar array drive motor - west

Polygon

12 sided cylinder, capped

12 sided cylinder, capped
12 sided cylinder, capped

Polygon
5 sided box
5 sided box

63

64-87

88-111

112-135
136

137- 141

142- 146

TABLE 5.11 AVHRR Model and Node Assignment

Component
MPS Bus

Power control

Batteries

Attitude control

Fuel tank
Yaw RWA

Geometric Model Assigned Nodes
5 sided box 1 - 4

Box 5- 10

Box 11 - 16
i

17 - 22
23 - 40

41 -64

Box

18 sided sphere
12 sided c, dinder, capped

Pitch RWA 12 sided

Roll RWA 12 sided

Solar array drive motor - east 5

Solar array drive motor - west 5
OSR's

MPS Bus south panel
Connector

EHF Feedhorn assembly
RF reflector

Reflector support
EHF Electronic I

EHF Electronics II

Polygon

Polygon
5 sidedbox

Box

6 sideddisc

4 sidedcone, capped
Box

cylindeL capped 65- 88

cylinder, capped 89- 112
sided box 113 -117
sided box 118- 122

123

124

125- 129

130-135

136-141
142-149

150-155

Box 156-161

TABLE 5.12 EHF Model and Node Assignment
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After generatingthe model, the orbital parameters were entered. PC-1TAS will

generate graphics so that the user may see the spacecraft in the orbit specified and will use

this data in the generation of view factors and shadow factors. The EHF payload was

analyzed for a Molniya orbit and the AVHRR payload for a circular, nearly polar orbit.

Orbit parameters are entered through the orbital analysis parameters menu and can be

rapidly changed to conduct analysis for any number of orbits the user desires.

Included with the PC-ITAS software are physical and optical properties of

numerous materials. The user may select from these tables or enter the requirements in the

appropriate blocks within the menu. Optical properties of the surfaces modelled must be

selected for analysis. The analyzer will automatically calculate view factors between

surfaces for use in the radiative heat transfer equation. The user may, if it is so desired,

link nodes by either radiation or conduction. Unless there is a specific need to do so,

radiation links need not be established as they are generated automatically. Conduction

transfers, where known, should be entered as part of the data. Should certain equipment

be operated for a set time duration and off for other periods, the analyzer is capable of

handling this condition. The power profile definitions menu will allow the entering of

these equipments along with a listing of their on and off times.

Equipment which dissipates heat can be indicated at the time the optical parameters

are designated. Any heat dissipated will become part of the environment and incorporated

into the thermal analysis. Because detailed information on the thermal energy generated by

the equipment and specific locations of that generation is not available, the heat dissipated

by a piece of equipment was estimated and then applied equally to all surfaces of the

geometric representation of that component.

The following table lists the materials selected, optical properties, and heat

dissipated per surface (node) of each payload.
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AVHRR

Component

Bus

Power control

Batteries

Attitude control

Fuel tank

AVHRR

RTU

RCU

Shield

OSR's

RWA's

SADM's

Material

Anodized Aluminum

7075-T6

Sandblasted Aluminum

2024

Polished Stainless Steel

302

Sandblasted Aluminum

2024

Polished Nickel Coating

Anodized Aluminum

Low A/E

Sandblasted Aluminum

2024

Sandblasted Aluminum

2024

Bare, Clean Aluminum

Ag-SiO2

Anodized Aluminum

2024

Anodized Aluminum

2024

Optical Properties

(t

0.30

0.42

0.38

0.38

0.44

0.25

0.38

0.38

0.19

0.05

0.68

0.68

0.80

0.21

0.19

0.19

0.05

0.72

0.19

0.19

0.08

0.8

0.48

0,48

Heat Dissipated

Per Surface (W)

0.1

9,0

0.3

0.2

1,5

0.3

0,3

0.5

0.7

TABLE 5.13 AVHRR Material Selection and Heat Dissipation
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El-IF

Component
Bus

Material

Anodized Aluminum

i 7075-T6

Power control Sandblasted Aluminum

2024

Batteries Polished Stainless Steel

3O2

Attitude control Sandblasted Aluminum

2024

Fuel tank Polished Nickel Coating

RWA's Anodized Aluminum

2024

SADM's Anodized Aluminum

2024

OSR's Ag-SiO2

Connector Anodized Aluminum

7075-T6

EHF Feedhorn Anodized

Aluminum7075-T6

RF reflector Reflector

Reflector

Support

El-IF Elex I

EHF Elex II

Flame Sprayed

Aluminum Oxide Rokide

A

Anodized Aluminum,

Gray

Anodized Aluminum,

Gray

Optical Properties

0_ C

0.30 0.80

0.38 0.19 0.1

0.38 0.19 3.0

0.38 0.19 0.3

0.44 0.05 0.2

0.68 0.48 0.5

0.68 0.48 0.7

0.05 0.8

0.30 0.80

0.30 0.80 0.16

0.10 0.10

0.27 0.75

0.56

0.56

0.60

0.60

Heat Dissipated

Per Surface (W)

3.3

10.0

TABLE 5.14 EHF Material Selection and Heat Dissipation
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After all parameters have been entered the thermal analysis can be initiated. The

results are placed in an output file and will include the parameters entered, all default

settings, and steady state temperatures for each node at the end of one orbit. The output for

each payload can be found in Appendix D.

5. Conclusions

The results of the thermal analysis on both payloads are indicative of a specific set

of conditions with estimations by the available data. This preliminary analysis indicates

that, with proper selection of coatings and materials, the temperatures of the various

equipments can be maintained within operating ranges. There are specific nodes which are

too cold or too hot, but since these are identified corrective action can be implemented.

Corrective action in these cases would be to insulate or link by conduction to the radiator.

To do this next step would require more detailed information in order to calculate path

lengths to be used in the conduction linking. Before a more refined analysis and

implementation of any corrective action there is a need to select the individual pieces of

equipment which will actually be used in the spacecraft systems.
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D. PROPULSION SUBSYSTEM

1. Functional Description

The propulsion subsystem consists of one propellent tank with a 20 kg capacity, six

.2 Ibf thrusters and associated values and tubing. Installed primarily as a backup system

for reaction wheel desamration, orbit maintenance, and orbit stationkeeping, the system is

provided with no redundancy. The fuel is hydrazine monopropellant with catalytic beds.

The center mounted spherical tank is filled to the amount required by the mission just prior

to launch.

a. Requirements

After separation from the Pegasus launch vehicle, the propulsion system will be

used to correct minor errors in the orbit. On orbit the system will provide delta V for

stationkeeping. See Table 5.15 for thruster operation and axis effect and Figure 5.4 for

thruster location..

Operation Thruster Number

Delta V Yaw 1A/2A 1C/2C

Delta V Roll 1B/2B

Positive Roll (+X) 1A

Negative Roll (-X) 2A

Positive Yaw (+Z) 1B

Negative Yaw (-Z) 2B

Positive Pitch (+Y) 1C

Negative Pitch (-Y) 2C

TABLE 5.15 Thruster Operations
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1A

@

FIGURE 5.4 Location of Thrusters

b. _ommary. of Subsystem

The propulsion subsystem consists of six 0.2 lbf thrusters. The thrusters

recommended are the Rocket Research MR 103C. These particular thrusters were chosen

for the design because the MR103C has a design that minimizes space required for

mounting. The MR103C is also the lightest of the .2 lbf thrusters considered for the

requirements of the satellite. The six thrusters along with the rest of the propulsion system

are depicted in a schematic in Figure 5.5. Note also that a 8 micron filter is incorporated to

screen the impurities remaining in the fuel. There is one pressure transducer and one

pressure regulator to monitor the pressure throughout the system.
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N2H2 FILL/DRAIN VALVE

N2H2

PRESSURE

REGULATOR

N2 1
FILTER

N2 FILL/DRAIN VALVE

PRESSURE

TRANSDUCER

FIGURE 5.5 Schematic Diagram of Propulsion System
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Thruster characteristics are detailed in Table 5.16.

Desisn Characteristic

Catalyst

Thrust, steady state Obf)

Feed press (psia)

Chamber press (psia)

Expansion Ratio

Flow rate (lbm/sec)

Valve

Valve power

Weight

Engine

Valve

Demonstrated Performance

Specific impulse

Total impulse (lbf- sec)

Total pulses

Minimum impulse bit

Steady state fn-ing (sec)

Shell 405

.252 - .042

420 - 70

370 - 60

100:1

.001 - .0002

Wright

9 Watts

0.73

0.28

0.45

SATCOM

227-206

35625

410000

.001

64800

TABLE 5.16 Summary of Propulsion Equipment

The 16 inch diameter tank is made of titanium alloy and made by TRW Pressure

Systems Inc. An elastomeric diaphragm inside the tank separates the nitrogen gas

pressurant from the propellant. Maximum capacity of the tank is 20 kgs. Table 5.17 lists

the characteristics of the tank.
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htemal Volume

Ol_r_n g Pressure

:Operating T_'np

Proof Pressure

Burst Pressure

1352 sq in

480 psia

70 degree F

590 psia

960 psia

TABLE 5.17 Propellant/t_ssurant Tank Characteristics

The fill and drain valves are used to service the propulsion subsystem during

system functional evaluation to include leakage and cleanliness tests, loading and

unloading, and prelaunch operations. The valves are manually operated and self contained.

The lines consist of titanium alloy tubing and fittings and interconnect the tank and

thrusters via a pressure transducer and regulator. The transducer and regulator measure

and maintain the proper inlet pressure to the operating thruster.

c. Summary_ of Subsystem Operations

Thruster operations can be performed with or without the solar arrays deployed.

Thrust can be applied to desaturate the reaction wheels along any axis but AV for orbit

maintenance can only be provided in the positive yaw or the positive roll directions. The

positive roll thrusters are placed to provide AV for orbit maintenance without the need for

reorientation of the spacecraft. Major orbit changes will require reorientation of the

spacecraft to align the flight path of the spacecraft along the positive Z axis. Mission

instrument deactivation may be required during major orbit corrections. The two thrusters

along the east face could possibly impinge on the solar panels, depending on the angular

position of the arrays. A electronic cutout cam would have to installed to prevent accidental

firing and subsequent damage to the arrays. It is unlikely that this would effect AVHRR

operations as the arrays operate + 50 ° degrees of the roll / yaw plane. The EHF payload

however, sometimes requires the arrays to rotate + 90 ° roll / yaw plane necessitating close
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managementof solar array and thruster operations. As an additional precaution, the

thrusters along the positive roll axis are canted out at an angle of 8° .

o

5.18.

Detailed Mass/Power Summary

A detailed mass/power summary of the propulsion subsystem is provided in Table

Element
i

0.2 lb Thruster (6)

Propellant Tank

Transduced Regulator

Tubin_

Electronics

Mass/k 8

4.4

5.9

1.4

Power/W

54 (max)

0

4

0

1.5 4

Drain/Fill Valves 1 0

Total 15.2 62

TABLE 5.18 Mass/Power Summary of Propulsion Subsystem
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E. TELEMETRY AND TRACKING SUBSYSTEM

1. Functional Description

The Tr&c package for the MPS Bus is designed to be compatible with the Air

Force SGLS system for satellite control. Tr&c is designed in the bus to operate at SHF

frequencies that correspond to channel 1 of the SGLS ground terminal as follows:

Command Uplink: 1.763721 GHz

Telemetry Downlink: 2.2 GHz

Carrier 1:2.2025 GHz

Carrier 2:2.1975 GHz

The "VF&C package sends and receives data from the payload and/or the anti.earth

face antenna through command controlled switches that allow the ground terminal to shift

between payload antennas and the anti-earth face antenna. The anti-earth face antenna is a

four element microstrip antenna that uses the same elements as the AVHRR antenna shown

in Figure 3.2 and has a gain of 2.5 dB. The switches will probably be aligned so that

during launch and activation, TI'&C will be accomplished with the SGLS system channel I

to the anti-earth face antenna. Once the satellite is on station, the payload "rT&C will have

been activated and the anti-earth face telemetry downlink can be put in standby. The anti-

earth face command receiver will remain active to provide a failsafe in case the satellite

attitude control system fails.
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ODMMANDS TELEMETRY

RTU

m

RCU

(SENSORS) GPS

FIGURE 5.6 "Fr&c Package

The TT&C consists of two major components as shown in Figure 5.6. These

components are the remote a'acking unit (RTU) and the remote command unit (RCU). The

RTU is the interface between the TI'&C antenna systems and the RCU. The function of
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the RTU is to take commands from the antennas and payload in the SGLS format and

demodulate and decode them to the point where they can be handled by the RCU. The

RTU also takes telemetry signals from the RCU, modulates and encodes them and sends

them on to antennas.

From Payload To payload

RTU

I

_FL%

FIGURE 5.7 Remote Tracking Unit
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Figure 5.7 showsa block diagram of the RTU. On the command side of the

circuit, the In'st function performed by the circuit is to check for a signal. The antennas

and/or payload have filtered the command channel and modulated it to 1.763721 GHz. If

the channel contains energy, the envelope detector and sample and hold circuit will use this

energy to hold open an electronic switch to send the command signal on to the FSK

demodulater. It is demodulated and decoded and sent on to a small processor that will

check the error correction coding (ECC) of the signal.

ECC is a process in which bits are added to each symbol to provide redundancy in

the data. A primary goal of ECC is to recognize a bit error in order to prevent improper

commands being executed, but for low bit error rates the ECC could be redundant enough

to actually correct bit errors. An example of ECC is the Hamming Code. The Hamming

code is a process in which check bits are inserted in a data stream that tell whether a group

of bits has an odd or even number of l's. (odd or even parity). If the check bit says that a

group of data bits should have even parity and the receiver counts an odd number of l's in

that group, then a bit error has occured. With redundant check bits, the bit in error may be

deduced and corrected. If there are not enough check bits or too many bit errors, then the

data will have to be retransmitted. MIL STD 1582 requires that ECC be used to allow for

higher bit error rates and prevent improper TT&C commands. This report will not explore

them in detail.

On the telemetry downlink side of the RTU, the telemetry signal comes from the

RCU. ECC is inserted in the data, the data is encoded and the FSK modulater prepares it

to be sent to the antennas at 2.2 GHz. The RTU only handles data that is compatible with

channel 1 of SGLS. Therefore, if another format or frequency is desired, the payload will

have to modulate and process the data itself. This allows for the MPS bus to be somewhat

modular.
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FROM RTU TO RTU

COMMAND
ALGORITHMS

TELEMETRY
DC_VNUNK

CODE CREATER

CPU Tracking
Beacon

=

I Thermal Power Attitude Payload AutonomousControl I Control Control Control Navigation

FIGURE 5.8 Remote Command Unit

Figure 5.8 shows a block diagram of the RCU. On the command side of the

circuit, the signal comes from the RTU and goes through a processor that contains all the

recognizable command algorithms. The signal will be compared to these algorithms and,

when a match is found, the CPU executes the command. On the telemetry side of the

circuit. Data is gathered from all the sensors throughout the satellite (including the payload)

and compiled into a telemetry downlink signal that is sent to the RTU.

The MPS bus has a GPS microreceiver onboard that operates with the GPS satellite

system to triangulate the position of the receiver using a method known as Time Difference
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of Arrival. If four GPS satellites are in view, the position of the satellite can be determined

to as close as 50 ft. This means that a tracking beacon will not be necessary and the

navigation of the satellite will be autonomous. One problem with GPS is that it is a

downlooking satellite and is designed to link with ground based systems. A satellite

system will have to lock onto the GPS satellites while they are pointed at the earth. The

satellite will most likely be receiving lower powered side-lobs and will require a significant

antenna gain in order to achieve the 34 dB C./N ratio that is required to receive analog data.

If one GPS satellite can be tracked then a solution can be determined, but it may take some

time. Also, MPS with an EHF payload will spend some time above the orbital altitude of

GPS and,therefore, may not be able to provide navigation information while the satellite is

above 20000 Km. The orbit determination will have to be done at lower altitudes.

In the event that the GPS receiver is not accurately predicting the position of the

satellite, a tracking Macon in the RCU can be turned on with a command signal and manual

range and range rate tracking can be accomplished. For manual tracking, the accuracy is

ranging to 50 ft and range rate to .120 ft/sec. The tracking beacon is a pseudonoise code

which is transmitted by the ground station, downconverted in the satellite, and

retransmitted. It is anticipated that the GPS microreceiver will be reliable and the tracking

beacon will remain in standby for most of the design life.

Table J. I shows the link analysis data for the telemetry and command signals. For

the EHF payload, the payload sends TI'&C data through either the VBWA or two earth

coverage feedhoms mounted on the earth face of the payload with the VBWA assembly as

shown in Figure 2.3. One E/C feedhorn is sized for 1.763721 GHz and the other is sized

for 2.2 GHz. If the variable beamwidth antenna fails, Tr&c can be accomplishe.d with the

E/C antennas. The link margin at apogee for the E/C feedhorns is 6.31 dB on the uplink

and 16.66 dB on the downlink. The link margin for the Variable Beamwidth Antennas is

above 20 dB for almost all of the orbit.
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For the AVHRR payload, the link analysis is shown in Table J.2 and is compatible

with the TIROS-N earth station. The analysis shows that the satellite will have excess

margin to close the link.
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F. STRUCTURAL SUBSYSTEM

1. Functional Description

The spacecraft bus structure was designed to fit within the 46 inch diameter

Pegasus shroud with two folding solar panels and to fit within the Taurus shroud with

three. Pentagonal, hexagonal, and octagonal shapes for the bus were explored, but a

rectangular design was chosen for simplicity and ease of assembly. The bus is built on a

rectangular frame that is comprised of hollow rectangular cross-section tubing made from

6061-T6 aluminum. Fastened to this frame are five load supporting honeycomb panels

with aluminum faceskins, one panel being the Anti-earth face. The sixth side of the

spacecraft bus is the earth/payload face. The entire spacecraft is mounted to Pegasus with a

standard Marmon clamp assembly. Total weight of the dry standard bus structure is 45

pounds for the AVHRR configuration and 59 pounds for the EHF configuration.

2. Requirements

The goal of modularity was balanced with the requirement to launch within 72

hours. This requirement to be launched within 72 hours severely limited the amount of

modularity to interchanging the payload face and perhaps removing or adding very select

equipment. Therefore, the panels are not removable and are permanently fastened to the

frame. The frame and panel construction was designed to withstand Pegasus launch loads

as depicted in Table 5.19.

Fli2ht Mode

Captive Carry

Powered Flight

X (Roll)

(2)

+.9

-.68

Y (Pitch)

(2)

+.822

-.922

Z (Yaw)

(2)

+3.5

-1.4

TABLE 5.19 Accelerations at Payload Interface
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3. Summary of Subsystem Operations

a. Frame Construction

The rectangular frame is comprised of aluminum rectangular tubing. The frame is

designed to withstand the axial and lateral loads of the Pegasus launch while the

honeycomb panels are designed for equipment mounting only. The axial tubing has a cross

sectional area of 1 1/2 x 2 inches O.D. and an average wall thickness of .125 inches. The

lateral tubing has cross sectional dimensions of 1 x 1 1/20.D. with .125 inch thickness.

The factor of safety used for both lateral and axial loads was 1.5. The axial tubing is

oriented so the 2 inch length is parallel to the +Z direction. This is to maximize the area

moment of inertia and to minimize deflection of the beam. A cross sectional view of an

axial frame member is depicted in Figure 5.9

1/8

-_ 1.5" ._

FIGURE 5.9 Cross-section of Tubular Frame

b. Honeycomb Panels

The 0.375 inch honeycomb panels with 0.004 inch faceskins are designed to meet

design criteria for minimum natural frequency and for stress due to dynamic loads. The
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primary purpose of the panel design is to be have the surface area to mount equipment.

The honeycomb panels are not designed to absorb either the axial or lateral loads of launch.

The honeycomb panels are simply supported along their four sides. A typical honeycomb

panel is depicted in Figure 5.10.

S

, ±
II llllllllllllllllllllllllllllllllllllllllllllh

S

S

S

FIGURE 5.10 Typical Honeycomb Panel

¢, Payload Mechanical Interface

For the separable payload interface, the MPS bus uses a slightly modified Orbital

Science Corporation Marmon clamp design. The OSC design was modified to allow

clearance for thrusters on the anti-earth face. The design still attaches directly to the

Pegasus Stage 3 avionics deck, but the clearance between the avionics shelf and the

payload attachment plane is increased from three to five inches. The design uses a standard

bolt cutter separation system with four springs supplying an initial push-off force of 330 N

(75 lbf). The Marmon clamp is depicted in Figure 5.11.
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L.,

Avionics Deck

Bolt Cutters

Payload SeparationAvionics Clamp Band
Structure

FIGURE 5.11 Marmon Clamp Design

d. Earth Face

The mass and structural requirements of this face are dependent of the payload

chosen. The 62 lb AVHRR is affixed directly to a 1 inch honeycomb panel whereas the 85

lb EHF payload is supported by a 6" x 32" x 28" aluminum frame. The thickness of the

aluminum face skin is .1 mm. The frame for the EHF configuration supports the EHF

feedhorn assembly, the variable beam antenna, the EHF and TT&C R/Ts, and the Optical

Solar Reflectors.

¢. Fogl Tank Sup_t_rt

The fuel tank is supported at its base and by four structural members attached to a

waistband. The base support affixes the fuel tank to the and-earth face of the bus. It is a

22 inch diameter flat disc that transmits the axial force of the fuel tank during launch
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directly to the Marmonclamp. The supportmembersare1inch aluminumroundtubing

capableof supportingthelateralloadsof launch.

4. Margins of Safety

The margins of safety for the frame/panel design are summarized in Table 5.20.

Component

Aluminum Frame

Aluminum Frame

Aluminum Frame

Honeycomb panel

Honeycomb panel

Expected Max

Load

12,600 psi

(compression)

900 psi (bendin[)

1,000 psi (shear)

20

11,406 psi

(facing stress)

Yield Load

37,000 psi

37,000 psi

30,000 psi

37,000 psi

24,000 psi

Margin of

Safety

32

1.9

29

1.1

1.1

TABLE 5.20 Margins of Safety

5. Detailed Mass Summary

The components of the structural subsystem are listed in Table 5.21. Figures listed

with an asterisk are to be read AVHRR/EHF
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Component

Lateral Rectangular Tubin_ (8)

Axial Rectangular Tubing(4)

Honeycomb panels (5)

Fuel tank waist band

Mass (kg)

6.01

3.40

.85

.68

Fuel tank base 1.36

.73Fuel tank structural supports (4)

Marmon clamp assembly

Earth Face

5.27

.18 / 6.61 *

Misc.Hardware 2.27

Total 20.75 / 27.13 *

TABLE 5.21 Mass Summary of Structural Subsystem
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APPENDIX A

ORBITAL DYNAMICS

Appendix A.I

Program SUN_ANGLE2

Listing and Sample Output
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PROGRAM SUN_ANGLE2

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

AUTHOR: Gary E. Yale

DATE: Nov 90

OBJECTIVE:
Computes the sun angle on each face of a S/C for up to 360 points
in the S/C orbit. The first set of calculations are for the orbit
geometry on the first day of Winter. The next three sets of
calculations are for the first day of each of the other seasons in
order.

ASSUMPTIONS:
Circular sunsynchronous orbit
The solar arrays are free to rotate around the S/C roll axis

SUPPORT MODULES: ANGLE

DOT
M,N3
ROT1
ROT2
ROT3
_S

INPUTS:
1 ) S/C orbit inclination
2 ) Longitude of the Ascending Node on the first day of Winter
3 ) The number of points to evaluate in the S/C orbit on the first

day of each season. This number cannot exceed 360 (evaluate
the angles at intervals of as small as every one degree in the
S/C orbit) without changing the variable declarations for the
arrays containing the angles.

VARIABLE DEFINITIONS:

All vectors have three components and their magnitude is in the
fourth position

INCL:

POINTS:

Orbit Inclination

Longitude of the Ascending Node on the first day of winter
The number of locations to evaluate in one orbit
Counter to indicate the season

COORDINATE SYSTEMS:

System: Sun (Denoted by "S")
Origin: Center of Earth
Principle Axis: Directly at sun
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C Third Axis:
C Second Axis:
C Principle Plane:
C
C System:
C Origin:
C Principle Axis:
C Third Axis:
C Second Axis:
C Principle Plane:
C
C System:
C Origin:
C Principle Axis:
C
C Third Axis:
C Second Axis:
C Principle Plane:
C
C System:
C Origin:
C Principle Axis:
C
C Third Axis:
C Second Axis:
C
C
C Principle Plane:
C
C System:
C Origin:
C Principle Axis:
C Second Axis:
C Third Axis:
C Principle Plane:
C

Perpendicular to Ecliptic (+ "North")
Complete Right Hand Coordinate System
Ecliptic

Season (Denoted by "Season")
Center of Earth
Sun vector projected into equatorial plane
Perpendicular to equator (North)
Complete Right Hand Coordinate System
Equatorial plane

Intermediate (Denoted by "1")
Center of Earth
Intersection of S/C orbit plane and equator
(Ascending Node)
Perpendicular to equator (North)
Complete Right Hand Coordinate System
Equatorial plane

Orbit Normal (Denoted by "O")
Center of Earth
Intersection of S/C orbit plane and equator
(Ascending Node)
Perpendicular to S/C orbit plane
Complete Right Hand Coordinate System such that
second axis is 90 deg from principle axis
measured in the direction of SIC motion

S/C orbit plane

Body (Denoted by "B")
Center of S/C
Out S/C Top (Away from Earth) (Yaw)
Out S/C Front (Along velocity vector) (Roll)
Out S/C Left (Pitch)
Local Horizontal

EXTERNAL N_LE
EXTERNAL DOT

CHARACTER*I AGAIN

INTEGER I, POINTS, SEASON

REAL*8 ANGLE, DOT
REAL*8 TILT, NEGTILT, DEG2RAD, RAD2DEG
REAL*8 INCL, OMEGA
REAL*8 SunS(4), SunSeason(4)
REAL*8 LeftB(4), RightB(4), FrontB(4), RearB(4),
REAL*8 SunLeft, SunRight
REAL*8 SunFront(360), SunRear(360), SunTop(360),
REAL*8 SARotate(360), SunSA(360)
REAL*8 THETA, Front, Rear, Top, Bot, SARot, SA

TopB(4), BotB(4)

SunBot(360)
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OPEN (UNIT = 8, FILE = 'Sun Angle2.Out', STATUS = 'NEW')

C
C
C
C
C
C
C
C

Useful Constants

RAD2DEG:
TILT:
NEGTILT:

Conversion Factor from Degrees to Radians
Conversion Factor from Radians to Degrees
Tilt of Earth's spin axis wrt normal to the ecliptic
Negative of TILT

DEG2RAD = PI / 180.0D0
RAD2DEG = 180.0D0 / PI
TILT = 23.5D0 * DEG2RAD
NEGTILT = -I.0D0 * TILT

C
C Get the input values
C Echo check them to the output file
C

5 WRITE(*,*)'Orbit Inclination (deg)?'
READ(*,*) INCL
WRITE(*,*)'Orbit Longitude of the Ascending Node (deg)'
WRITE(*,*)' on the first day of winter?'
READ(*,') OMEGA
WRITE(*,*)'Number of points to evaluate in one orbit'
READ(*,*)POINTS

WRITE(8,1000)
WRITE(8,1020) INCL
WRITE(8,1030) OMEGA
WRITE(8,1040) POINTS

C
C Convert the angles to radians
C

INCL = INCL * DEG2RAD
OMEGA = OMEGA * DEG2RAD

C

C Write the header information to the output file
C
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WRITE(*,1090)
WRITE(8,1090)

C
C Initialize the season counter
C

SEASON = 0

C
C The next line begins the loop that cycles through the seasons
C beginning with Winter
C

100 SEASON = SEASON + 1

GO TO (1,2, 3, 4), SEASON

1 CONTINUE

C
C WINTER Calculations
C

C

C Direction of the sun vector expressed in sun coordinates
C SunS = (1)$1 + (0)$2 + (0)$3
C
C Define the sun vector for the first day of Winter
C

SunS(l) = 1.0D0
SunS(2) = 0.0D0
SunS(3) = 0.0D0
CALL MAG(SunS)
CALL ROT2(SunS, NEGTILT, SunSeason)
G_)TO 10

2 CONTINUE

C
C SPRING Calculations
C
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C
C Direction of the sun vector expressed in sun coordinates
C Suns = (1)S1 + (0)S2 + (0)$3
C
C Define the sun vector for the first day of Spring
C

SunS(l) = 1.0D0
SunS(2) = O.ODO
SunS(3) = 0.0D0
CALL MAG(SunS)
CALL ROT1 (SunS, NEGTILT, SunSeason)
G_)TO 10

3 COt,#I'INUE

C
C SUMMER Calculations
C

C
C Direction of the sun vector expressed in sun coordinates
C SunS = (1)S1 + (0)S2 + (0)$3
C
C Define the sun vector for the first day of Summer
C

SunS(l) = 1.0D0
SunS(2) = 0.0D0
SunS(3) = 0.0D0
CALL MAG(SunS)
CALL ROT2(SunS, TILT, SunSeason)
GO TO 10

4 CONTINUE

C
C FALL Calculations
C

C
C Direction of the sun vector expressed in sun coordinates
C Suns = (1)$1 + (0)$2 + (0)$3
C
C Define the sun vector for the first day of Fall
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C

SunS(l) = 1.0D0
SunS(2) = 0.0D0
SunS(3) = 0.0D0
CALL MAG(SunS)
CALL ROTI(SunS, TILT, SunSeason)

10 CALL SUNANGLES(SunSeason, INCL, OMEGA, POINTS, SunLeft, SunRight,
+ SunFront, SunRear, SunTop, SunBot, SARotate, SunSA)

C
C Choose the appropriate write statement based on the season
C

GO TO (11, 12, 13, 14), SEASON

11 WRITE(*,1045)
WRITE(8,1045)
GO TO 30

12 WRITE(*,1046)
WRITE(8,1046)
GO TO 30

13 WRITE(*,1047)
WRITE(8,1047)
GO TO 30

14 WRITE(*,1048)
WRITE(8,1048)
GO TO 3O

C
C Convert sun angle to the S/C left side to degrees before writing.
C Do same for S/C right side.
C
C These two angles are constant as the SIC progresses through one
C revolution in its orbit
C

30 WRITE(*,1050)SunLeft * RAD2DEG
WRITE(8,1050)SunLeft * RAD2DEG

WRITE(*,1060)SunRight * RAD2DEG
WRITE(8,1060)SunRight * RAD2DEG

WRITE(*,1070)
WRITE(8,1070)
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C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

The sun angles to the other S/C faces vary with the location in
the orbit. The next DO LOOP converts those angles at the various
orbit locations to degrees before writing. The following angles
are written to a table:

THETA:

FRONT:
REAR:
TOP:
BOT:

SA:

Location of S/C in orbit measured in direction of S/C
motion from the point where the S/C crosses the plane
of the ecliptic in a northerly direction
Sun angle to the S/C front face
Sun angle to the S/C rear face
Sun angle to the SIC top face
Sun angle to the S/C bottom face
Angle the solar arrays should rotate to maximize
power output
Sun angle to the solar arrays after they have rotated

DO 401= 1, POINTS
THETA = I * 360.0D0 / POINTS
Front = SunFront(I) * RAD2DEG
Rear = SunRear(t) * RAD2DEG
Top = SunTop(I) * RAD2DEG
Bot = SunBot(I) * RAD2DEG
SARot = SARotate(I) * RAD2DEG
SA = SunSA(I) * RAD2DEG
WRITE(*,1080) I,THETA,Front,Rear,Top,Bot,SARot,SA
WRITE(8,1080) I,THETA,Front,Rear,Top,Bot,SARot,SA

40 CONTINUE

C
C Check to see if the season just calculated was the last season
C for this case
C

IF (SEASON .NE. 4) THEN
GO TO 100

ENDIF

C
C See if there is another case to run
C

WRITE(*,*)' Do You have another case? Y/N'
READ(*,*)AGAIN
IF ((AGAIN .EQ. "Y").OR. (AGAIN .EQ. "y")) THEN
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GOTO5
ENDIF

1000
1020
1030

1040
1045
1046
1047
1048
1050
1060
1070

1080
1090

FORMAT(Ill)
FORMAT(15X,F7.3,' Orbit Inclination (deg)')
FORMAT(15X,F7.3,' Orbit Longitude of the Ascending Node (deg)'J,
+ 14X,' on the first day of Winter')
FORMAT(15X,17,' Number of points to evaluate in one revolution')
FORMAT(IIII/,15X,'The following angles apply for WINTER')
FORMAT(IIIII,15X,'The following angles apply for SPRING')
FORMAT(I//I/,15X,'The following angles apply for SUMMER')
FORMAT(IIIII,15X,'The following angles apply for FALL')
FORMAT(/,15X,F7.3,' Sun Angle to S/C Left Side')
FORMAT(15X,FT.3,' Sun Angle to SIC Right Side')
FORMAT(/,15X,'Point OrbAng SunFront SunRear SunTop',
+5X,'SunBot S/ARotate SunSA')

FORMAT(15X,14,7F 10.3)
FOR MAT(/,21 X,'D E FI NITION S:',/,26 X,

+'OrbAng: Angle between equator and S/C in orbital plane',/,
+26X,'SunFront: Sun Angle to SIC Front Side',/,
+26X,'SunRear: Sun Angle to S/C Rear Side',/,
+26X,'SunTop: Sun Angle to S/C Top Side',/,
+26X,'SunBot: Sun Angle to S/C Bottom Side',/,
+26X,'S/A Rotate: Angle S/A Should Rotate for rain Sun Angle',/,
+26X,'SunSA: Sun Angle to Solar Array after Array Rotation')

END

SUBROUTINE SUNANGLES(SunStart, INCL1, OMEGA1, TRIALS, LEFT, RIGHT,
+ FRONT, REAR, TOP, BO'F'FOM, ROTATE, ARRAY)

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

AUTHOR: Gary E. Yale

DATE: Nov 90

OBJECTIVE:
Computes the sun angle on each face of a S/C for up to 360 points
in the SIC orbit.

ASSUMPTIONS:

Circular sunsynchronous orbit
The solar arrays are free to rotate around the S/C roll axis

SUPPORT MODULES: ANGLE
CRESS
DOT
MAG
ROT1
ROT2
ROT3
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C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

fllllltlll VARIABLE DEFINITIONS \\\\\\\\\\

All vectors have three components and their magnitude is in the
fourth position

INPUT VARIABLES:

SunStart:
INCL1 :
_1:

TRIALS:

Sun vector expressed in season system
SIC orbit inclination (rad)
S/C orbit longitude of the ascending node on the first
day of Winter (rad)
Number of evenly spaced points to evaluate in one S/C
orbit

OUTPUT VARIABLES:

LEFT:
RIGHT:
FRONT:
REAR:
TOP:
BOI-I'OM:
ROTATE:

ARRAY:

Sun angle to the S/C left face
Sun angle to the SIC right face
Array of sun angles to the S/C front face
Array of sun angles to the S/C rear face
Array of sun angles to the S/C top face
Array of sun angles to the S/C bottom face
Array of angles the solar arrays should rotate to provide
maximum power
Array of sun angles to the solar arrays after they rotate

LOCAL VARIABLES:

Sunl:
SunO:
SunB:
SVRAN:
SANF:
BETA:
CHECK:

Sun vector expressed in intermediate coordinate system
Sun vector expressed in orbit normal coordinate system
Sun vector expressed in body coordinate system
Vector normal to plane containing sun vector and roll axis
Vector normal to solar array face
Dummy variable for various angles
Determines whether two vectors are perpendicular

COORDINATE SYSTEMS:

System:
Origin:
Principle Axis:
Third Axis:
Second Axis:

Principle Plane:

Sun (Denoted by "S')
Center of Earth

Directly at sun
Perpendicular to Ecliptic (+ "North')
Complete Right Hand Coordinate System
Ecliptic

System:
Origin:
Principle Axis:
Third Axis:
Second Axis:

Principle Plane:

Season (Denoted by "Start')
Center of Earth
Sun vector projected into equatorial plane
Perpendicular to equator (North)
Complete Right Hand Coordinate System
Equatorial plane
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C System:
C Origin:
C Principle Axis:
C
C Third Axis:
C Second Axis:

C Principle Plane:
C

C System:
C Origin:
C Principle Axis:
C
C Third Axis:
C Second Axis:
C
C
C Principle Plane:
C
C System:
C Origin:
C Principle Axis:
C Second Axis:
C Third Axis:

C Principle Plane:
C

Intermediate (Denoted by "1")
Center of Earth

Intersection of S/C orbit plane and equator
(Ascending Node)
Perpendicular to equator (North)
Complete Right Hand Coordinate System
Equatorial plane

Orbit Normal (Denoted by "O')
Center of Earth

Intersection of S/C orbit plane and equator
(Ascending Node)
Perpendicular to S/C orbit plane
Complete Right Hand Coordinate System such that
second axis is 90 deg from principle axis
measured in the direction of SIC motion
S/C orbit plane

Body (Denoted by "B")
Center of S/C

Out S/C Top (Away from Earth) (Yaw)
Out S/C Front (Along velocity vector) (Roll)
Out S/C Left (Pitch)
Local Horizontal

EXTERNAL ANGLE
EXTERNAL DOT

INTEGER TRIALS, I

REAL*8 ANGLE, DOT
REAL*8 LEFT, RIGHT
REAL*8 FRONT(180), REAR(180), TOP(180), BOTTOM(180)
REAL*8 ROTATE(180), ARRAY(180)
REAL*8 SunStart(4), Sunl(4), SunO(4), SunB(4), SVRAN(4), SANF(4)
REAL*8 LeftB(4), RightB(4), FrontB(4), RearB(4), TopB(4), BotB(4)
REAL*8 BETA, INCL1, OMEGA1, CHECK

C
C Express Sun Vector in the Intermediate Coordinate System, Sunl.
C BETA: Angle between SunStarl Vector and Ascending Node.
C

BETA = (PI/2.0D0) + OMEGA1
CALL ROT3( SunStart, BETA, Sunl)

C
C Express Sun Vector in the Orbit Normal Coordinate System, SunO
C
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CALL ROT1( Sunl, INCL1, SunO)

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

Because of the way the Orbit Normal Coordinate System is defined,
and because the spacecraft is presumed to keep one face pointing
toward the Earth, the angle between the sun vector and the vector
normal to the spacecraft's left face is independent of motion
in the orbital plane. The vector normal to the left face has
only one component which is the same whether expressed in Body or
Orbit Normal Coordinate Systems. The same can be said of the
angle between the sun vector and the normal to the spacecraft's
right face.

LeftB: Vector Normal to SIC's Left side expressed in Body
Coordinate System (along the positive B3 axis)

RightB: Vector Normal to S/C's Right side expressed in Body
Coordinate System (along the negative B3 axis)

LEFT: Angle between Sun Vector and the S/C's Left side
RIGHT: Angle between Sun Vector and the S/C's Right side

LeftB(1) = 0.0D0
LeftB(2) = 0.0D0
LeftB(3) = 1.0D0
CALL MAG(LeftB)
LEFT = ANGLE(SunO, LeftB)

RightB(1) = 0.0D0
RightB(2) = 0.0D0
RightB(3) = -I.0D0
CALL MAG(RightB)
RIGHT = ANGLE(SunO, RightB)

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

The other faces have the following Body Coordinate System definitions

FrontB:

RearB:

TopB:

BotB:

Veclor Normal to S/C's Front side expressed in Body
Coordinate System (along the positive B2 axis)
Leading Face
Vector Normal to S/C's Rear side expressed in Body
Coordinate System (along the negative B2 axis)
Trailing Face
Vector Normal to SlC's Top side expressed in Body
Coordinate System (along the positive B1 axis)
Face away from Earth
Vector Normal to S/C's Bottom side expressed in Body
Coordinate System (along the negative B1 axis)
Earth Face
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FrontB(1) = 0.0D0
FrontB(2) = 1.0D0
FrontB(3) = 0.0D0
CALL MAG(FrontB)

RearB(1) = 0.0D0
RearB(2) = -1.0D0
RearB(3) = 0.0D0
CALL MAG(RearB)

TopB(1) = 1.0D0
TopB(2) = 0.0D0
TopB(3) = 0.0D0
CALL MAG(TopB)

BotB(1) = -1.0D0
BotB(2) = 0.0D0
BotB(3) = 0.0D0
CALL MAG(BotB)

C
C
C
C
C
C
C
C
C
C
C
C
C

Rotate the spacecraft through one orbit to find the angles between
the sun vector and the other spacecraft faces. The rotation begins
at the ascending node. The rotation actually converts the sun
vector from the orbit normal coordinate system to the body
coordinate system.

BETA:
FRONT:
REAR:
TOP:
BOTTOM:

Location of the S/C measured from the ascending node
Angle between Sun Vector and the S/C's Front side
Angle between Sun Vector and the S/C's Rear side
Angle between Sun Vector and the S/C's Top side
Angle between Sun Vector and the S/C's Bottom side

DO 10 I = 1, TRIALS
BETA = I * (2.0D0 * PI / TRIALS)
CALL ROT3( SunO, BETA, SunB)
FRONT(I) = ANGLE(SunB, FrontB)
REAR(I) = ANGLE(SunB, RearB)
TOP(I) = ANGLE(SunB, TopB)
BOTTOM(I) = ANGLE(SunB, BoIB)

C
C Find the vector normal to the plane containing
C the roll axis and the sun vector
C

CALL CROSS(FRONTB, SunB, SVRAN)
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C
C
C
C
C
C
C
C
C
C
C
C
C
C

The power output from the solar arrays is maximized when the
vector normal to the solar arrays is in the same plane as the
one defined by the sun vector and the S/C roll axis. Without
any rotation, the solar array normal vector is parallel to the
vector normal to the S/C left face. The angle the solar arrays
should rotate to bring their normal vector into the plane containing
the roll axis and the sun vector is complementary with the angle
between the solar array normal vector and the vector normal to
the plane containing the sun vector and the S/C roll axis.

Find the angle the solar arrays should rotate to maximize power
output then rotate the solar arrays through that angle.

ROTATE(I) = PI / 2.0D0 - ANGLE(LeftB, SVRAN)
CALL ROT2(LEFTB, ROTATE(I), SANF)

C
C
C
C
C
C
C
C
C
C
C
C

If the solar array normal vector rotated in the correct direction,
the vector will be in the same plane as the roll axis and the sun
vector. If this is true, then the normal to that plane and the
solar array normal vector are perpendicular. This can be verified
by looking al their dot product. If the dot product isn't zero,
the direction of rotation should be reversed. The code rechecks
the dot product. If it still isn't equal to zero, there is an
error somewhere. The code indicates this by assigning a value of
4"pi radians. The user must recognize this value is he/she sees
it in the output.

CHECK -- DOT(SVRAN, SANF)
IF(DABS(CHECK) .GT. 0.01D0) THEN

ROTATE(I) -- -1.0D0 * ROTATE(I)
CALL ROT2(LEFTB, ROTATE(I), SANF)
CHECK -- DOT(SVRAN, SANF)
IF(DABS(CHECK) .GT. 0.01D0) THEN

ROTATE(I) = 4.0D0 * PI
ENDIF

ENDIF

ARRAY(I) -- ANGLE(SANF, SunB)
10 CONTINUE

RETURN
END
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SUBROUTINE ROTI(VIN, T, VOUT)

C
C AUTHOR: Gary E. Yale
C
C DATE: Nov 90
C
C OBJECTIVE: Expresses a vector in a coordinate system which is
C rotated T radians around the first axis as compared to the
C original coordinate system
C
C SUPPORT MODULES: MAG
C
C �lUll/Ill VARIABLE DEFINITIONS \\\\\\\\\\
C
C All vectors have three components and their magnitude is in the
C fourth position
C
C INPUT VARIABLES:
C
C VlN: Input vector
C T: Angle of rotation (rad)
C
C OUTPUT VARIABLES:
C
C VOUT: Output vector
C
C LOCAL VARIABLES:
C
C C: Cosine of the input angle, T
C S: Sine of the input angle, T
C TEMP: Temporary storage location
C

REAL*8 VIN(4), T, VOUT(4)
REAL*8 C, S, TEMP
TEMP = VIN(3)
C = DCOS(T)
S = DSIN(T)
VOUT(3) = C * VIN(3) - S * VIN(2)
VOUT(2) = C * VIN(2) + S * TEMP
VOUT(1) = VIN(1)
CALL MAG(VOUT)
RETURN
END
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SUBROUTINE ROT2(VIN, T, VOUT)

C
C AUTHOR: Gary E. Yale
C
C DATE: Nov 90
C
C OBJECTIVE: Expresses a vector in a coordinate system which is
C rotated T radians around the second axis as compared to the
C original coordinate system
C
C SUPPORT MODULES: MAG
C
C II!1111I// VARIABLE DEFINITIONS \\\\\\\\\\
C
C All vectors have three components and their magnitude is in the
C fourth position
C
C INPUT VARIABLES:
C
C VIN: Input vector
C T: Angle of rotation (rad)
C
C OUTPUT VARIABLES:
C
C VOUT: Output vector
C
C LOCAL VARIABLES:
C
C C:. Cosine of the input angle, T
C S: Sine of the input angle, T
C TEMP: Temporary storage location
C

REAL*8 VIN(4), T, VOUT(4)
REAL°8 C, S, TEMP
TEMP = VIN(3)
C = DCOS(T)
S = DSIN(T)
VOUT(3) = C * VIN(3) + S * VIN(1)
VOUT(1) = C * VIN(1) - S * TEMP
VOUT(2) = VIN(2)
CALL MAG(VOUT)
RETURN
END
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SUBROUTINE ROT3(VIN, T, VOUT)

C
C AUTHOR: Gary E. Yale
C
C DATE: Nov 90
C
C OBJECTIVE: Expresses a vector in a coordinate system which is
C rotated T radians around the third axis as compared to the
C original coordinate system
C
C SUPPORT MODULES: MAG
C
C ////////// VARIABLE DEFINITIONS \\\\\\\\\\
C
C All vectors have three components and their magnitude is in the
C fourth position
C
C INPUT VARIABLES:
C
C VIN: Input vector
C T: Angle of rotation (rad)
C
C OUTPUT VARIABLES:
C
C VOUT: Output vector
C
C LOCAL VARIABLES:
C
C C: Cosine of the input angle, T
C S: Sine of the input angle, T
C TEMP: Temporary storage location
C

REAL*8 VIN(4), T, VOUT(4)
REAL*8 C, S, TEMP
TEMP = VlN(2)
C = DCOS(T)
S = DSIN(T)
VOUT(2) = C * VIN(2) - S * VIN(1)
VOUT(1) = C * VIN(1) + S * TEMP
VOUT(3) = VIN(3)
CALL MAG(VOUT)
RETURN
END
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SUBROUTINE MAG(VECT)

C
C AUTHOR: Gary E. Yale
C
C DATE: Nov 90
C
C OBJECTIVE: Find the magnitude of a vector and store that value
C as the fourth element of the vector array
C
C SUPPORT MODULES: NONE
C
C I/lUll/l/ VARIABLE DEFINITIONS \\\\\\\\\\
C
C All vectors have three components and their magnitude is in the
C fourth position
C
C INPUT VARIABLES:
C
C VECT: Vector with an unknown value for its magnitude
C
C OUTPUT VARIABLES:
C
C VECT: Vector with its magnitude as the fourth element
C
C LOCAL VARIABLES: NONE
C

REAL*8 VECT(4)
VECT(4) = DSQRT( VECT(1)°*2 + VECT(2)'*2 + VECT(3)*'2 )
RETURN
END

SUBROUTINE CROSS(A, B, C)

C
C
C
C
C
C
C
C
C
C
C
C
C
C

AUTHOR: Gary E. Yale

DATE: Nov 90

OBJECTIVE: Find the cross product of two vectors
C=AXB

SUPPORT MODULES: MAG

////////// VARIABLE DEFINITIONS \\\\\\\\\\

All vectors have three components and their magnitude is in the
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C
C
C
C
C
C
C
C
C
C
C
C
C

fourth position

INPUT VARIABLES:

A: First vector in the vector cross product
B: Second vector in the vector cross product

OUTPUT VARIABLES:

C: Result of the vector cross product

LOCAL VARL,_BLES: NONE

REAL'8 A(4),
C(1) = A(2) *
0(2) --- A(3) "
C(3) = A(1) "
CALL MAG(C)
RETURN
END

B(4), C(4)
B(3) - A(3) * B(2)
B(1) - A(1) * B(3)
B(2) - A(2) * B(1)

FUNCTION ANGLE (VECTA, VECTB)

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

AUTHOR: Gary E. Yale

DATE: Nov 90

OBJECTIVE: Find the angle between two vectors using the property
of the dot product (the angle is the inverse cosine of the dot
product divided by the product of their magnitudes)

SUPPORT MODULES: DOT

I//////I// VARIABLE DEFINITIONS \\\\\\\\\\

All vectors have three components and their magnitude is in the
fourth position

INPUT VARIABLES:

VECTA: One of the vectors defining an angle
VECTB: Second vector defining an angle

OUTPUT VARIABLES:

ANGLE: The angle between the two vectors (rad)

LOCAL VARIABLES: NONE
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C

EXTEFCqALDOT
REAL*8 VECTA(4), VECTB(4)
REAL*8 ANGLE
ANGLE = DACOS( DOT(VECTA, VECTB) / (VECTA(4) * MECTB(4)) )
RETURN
END

FUNCTION DOT (MECTA, VECTB)

C
C AUTHOR: Gary E. Yale
C
C DATE: Nov 90
C
C OBJECTIVE: Find the dot product of two vectors
C
C SUPPORT MODULES: NONE
C
C I///////// VARIABLE DEFINITIONS \\\\\\\\\\
C
C All vectors have three components and their magnitude is in the
C fourth position
C
C INPUT VARIABLES:
C
C VECTA: First vector
C VECTB: Second vector
C
C OUTPUT VARIABLES:
C
C DOT: Dot product of two vectors
C
C LOCAL VARIABLES: NONE
C

REAL*8 VECTA(4), VECTB(4)
REAL*8 DOT
DOT = VECTA(1)*VECTB(1) + VECTA(2)*VECTB(2) + VECTA(3)*VECTB(3)
RETURN
END
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98.750
37.500

72

Orbit Inclination (deg)
Orbit Longitude of the Ascending Node (deg)
on the first day of Winter
Number of points to evaluate in one revolution

DEFINITIONS:

OrbAng:
SunFront:
SunRear:
SunTop:
SunBot:
S/A Rotate:
SunSA:

Angle between equator and SIC in orbital plane
Sun Angle to S/C Front Side
Sun Angle to S/C Rear Side
Sun Angle to S/C Top Side
Sun Angle to S/C Bottom Side
Angle S/A Should Rotate for min Sun Angle
Sun Angle to Solar Array after Array Rotation

The following angles apply for WINTER

38.763 Sun Angle to S/C Left Side
141.237 Sun Angle to S/C Right Side

Point
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

OrbAng
5.000

10.000
15.000
20.000
25.000
30 000
35 000
40 000
45 000
50 000
55 000
60 000
65 000
70 000
75 000
80 000
85 000
90 000
95 000

100.000
105.000
110.000
115.000
120.000
125.000
130 000
135 000
140 000
145 000
150 000
155 000
160 000

Sun

103
100

97
94
91
88

Front
515
497
428
324
200
070

84 949
81 852
78 794
75 790
72 858
70 016
67 283
64.681
62.232
59.962
57.897
56.064
54.490
53.201
52.222
51.571
51.263
51.304
51.693
52.422
53.475
54.832
56.469
58.359
60.475
62.788

SunRear
76.485
79.503
82.572
85.676
88.800
91.930
95.051
98.148

101.206
104.210
107.142
109.984
112.717
115.319
117.768
120.038
122.103
123.936
125.510
126.799
127.778
128.429
128.737
128.696
128.307
127.578
126.525
125.168
123.531
121.641
119.525
117.212

SunTop
125.510
126.799
127.778
128.429
128.737
128.696
128.307
127.578
126.525
125.168
123.531
121.641
119.525
117.212
114.725
112.090
109.330
106.465
103.515
100.497

97.428
94.324
91.200
88.070
84.949
81.852
78.794
75.790
72.858
70.016
67.283
64.681

SunBot
54.490
53.201
52.222
51.571
51.263
51.304
51.693
52.422
53.475
54.832
56.469
58.359
60.475
62.788
65.275
67.910
70.670
73.535
76.485
79.503
82.572
85.676
88.800
91.930
95.051
98.148

101.206
104.210
107.142
109.984
112.717
115.319

S/A Rotate
36.683
37.532
38.155
38.559
38.747
38.722
38.484
38.029
37.354
36.452
35.314
33.932
32.294
30.389
28.210
25.748
23.002
19.976
16.684
13.151

9.414
5.523
1.538

-2 473
-6 442

-1 0 302
-13 995
-1 7 475
-20 706
-23 668
-26.348
-28.743

SunSA
13.515
10.497

7.428
4.324
1.200
1.930
5.051
8.148

11.206
14.210
17.142
19.984
22.717
25.319
27.768
30.038
32.103
33.936
35.510
36.799
37.778
38.429
38.737
38.696
38.307
37.578
36.525
35.168
33.531
31.641
29.525
27.212
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33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
6O
61
62
63
64
65
66
67
68
69
7O
71
72

165 000
170 000
175 000
180 000
185 000
190 000
195 000
200.000
205.000
210.000
215.000
220.000
225.000
230.000
235.000
240.000
245.000
250.O00
255.000
260.000
265,000
270.000
275.000
280.000
285.000
290.000
295.000
300.000
305.000
310.000
315.000
320.000
325.000
330.000
335.000
340.000
345.000
350.000
355.000
360.000

65.275
67.910
70.670
73.535
76.485
79.503
82.572
85.676
88.800
91.930
95.051
98.148

101.206
104.210
107.142
109.984
112.717
115.319
117.768
120.038
122.103
123.936
125.510
126.799
127.778
128.429
128.737
128.696
128.307
127.578
126.525
125.168
123.531
121.641
119.525
117.212
114.725
112.090
109.330
106.465

114.725
112.090
109.330
106.465
103.515
100.497

97.428
94.324
91.200
88.070
84.949
81.852
78.794
75.790
72.858
70.016
67.283
64.681
62.232
59.962
57,897
56.064
54.490
53.201
52.222
51.571
51.263
51.304
51.693
52.422
53.475
54.832
56.469
58.359
60.475
62.788
65.275
67.910
70.670
73.535

62.232
59.962
57.897
56.064
54.490
53.201
52.222
51.571
51.263
51.304
51.693
52.422
53.475
54.832
56.469
58.359
60.475
62.788
65.275
67.910
70.670
73.535
76.485
79.503
82.572
85.676
88.800
91.930
95.051
98.148

101.206
104.210
107.142
109 984
112 717
115 319
117 768
120 038
122 103
123 936

117.768
120.038
122.103
123.936
125.510
126.799
127.778
128.429
128.737
128.696
128.307
127.578
126.525
125.168
123.531
121.641
119.525
117.212
114.725
112.090
109.330
106.465
103,515
100.497

97.428
94.324
91.200
88.070
84.949
81 852
78 794
75 790
72 858
70 016
67 283
64 681
62.232
59.962
57,897
56.064

-30 858
-32 699
-34 277
-35 601
-36 683
-37 532
-38.155
-38.559
-38.747
-38.722
-38.484
-38.029
-37.354
-36 452
-35 314
-33 932
-32 294
-30 389
-28 210
-25 748
-23 002
-19 976
-16 684
-13 151

-9.414
-5,523
-1.538

2.473
6,442

10,302
13.995
17.475
20.706
23.668
26.348
28.743
30.858
32.699
34.277
35.601

24.725
22.090
19.330
16.465
13.515
10.497

7.428
4.324
1.200
1.930
5.051
8.148

11.206
14.210
17.142
19.984
22.717
25.319
27.768
30.038
32.103
33,936
35.510
36.799
37.778
38.429
38.737
38.696
38.307
37.578
36.525
35.168
33.531
31.641
29.525
27.212
24.725
22.090
19.330
16.465
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The following angles apply for SPRING

38.361 Sun Angle to S/C Left Side
141.639 Sun Angle to SIC Right Side

Point OrbAng SunFront SunRear
1 5.000 80.021 99.979
2 10.000 77.023 102.977
3 15,000 74.090 105.910
4 20.000 71.239 108.761
5 25.000 68.491 111.509
6 30.000 65.864 114.136
7 35,000 63.382 116.618
8 40.000 61.069 118.931
9 45.000 58.949 121.051

1 0 50.000 57.049 122.951
1 1 55.000 55.397 124.603
1 2 60.000 54.017 125.983
1 3 65.000 52,934 127.066
14 70.000 52.170 127.830
1 5 75.000 51.738 128.262
1 6 80.000 51.650 128.350
1 7 85.000 51.905 128.095
1 8 90.000 52.500 127.500
1 9 95.000 53.421 126.579
20 100.000 54.651 125.349
21 105.000 56.166 123.834
22 110.000 57.942 122.058
2 3 115.000 59.952 120.048
24 120.000 62.169 117.831
25 125.000 64.568 115.432
26 130.000 67.123 112.877
27 135.000 69.811 110.189
28 140.000 72,611 107.389
2 9 145.000 75.504 104.496
30 150.000 78.471 101.529
31 155.000 81.495 98.505
32 160.000 84.560 95.440
33 165.000 87.651 92.349
34 170.000 90.753 89.247
35 175.000 93.852 86.148
36 180.000 96.932 83.068
37 185.000 99.979 80.021
38 190.000 102.977 77.023
39 195.000 105.910 74.090
40 200.000 108.761 71.239
41 205.000 111.509 68.491
42 210.000 114.136 65.864
43 215.000 116.618 63.382
44 220.000 118.931 61.069
45 225.000 121.051 58.949
46 230.000 122.951 57.049
47 235.000 124.603 55.397
48 240.000 125.983 54,017

SunTop
26.579
25.349
23.834
22.058
20.048
17.831
15.432
12.877
10.189
07.389
04.496
01.529
98.505
95.440
92,349
89.247
86.148
83.068
80.021
77.023
74.090
71.239
68.491
65.864
63.382
61.069
58.949
57.049
55.397
54.017
52.934
52.170
51.738
51.65O
51.9O5
52.500
53.421
54.651
56.166
57.942
59.952
62.169
64.568
67.123
69.811
72.611
75.504
78.471

SunBot
53.421
54.651
56.166
57.942
59.952
62.169
64.568
67.123
69.811
72.611
75.504
78.471
81.495
84.560
87.651
90.753
93.852
96.932
99.979

102.977
105.910
108.761
111.509
114.136
116.618
118.931
121.051
122.951
124.603
125.983
127.066
127.830
128.262
128.350
128,095
127.500
126.579
125.349
123,834
122,058
120.048
117.831
115.432
112.877
110.189
107.389
104.496
101.529

S/A Rotate
37.235
36.421
35.378
34.094
32.561
30.769
28.709
26.372
23.756
20.863
17.704
14.299
10.681

6.894
2.992

-0.960
-4.896
-8.750

-12.462
-15.981
-19,270
-22.302
-25.061
-27 541
-29 743
-31 672
-33 337
-34 748
-35 91 4
-36 844
-37 548
-38.032
-38.300
-38.354
-38.196
-37.824
-37.235
-36.421
-35.378
-34.094
-32.561
-30.769
-28.709
-26.372
-23.756
-20.863
-17.704
-14.299

SunSA
9.979

12.977
15.910
18.761
21.509
24.136
26.618
28.931
31.051
32.951
34.603
35.983
37.066
37.830
38.262
38.350
38.095
37.500
36.579
35.349
33.834
32.058
3O .048
27.831
25.432
22.877
20.189
17.389
14.496
11.529

8.505
5.440
2.349
0.753
3.852
6.932
9.979

12.977
15.910
18.761
21.509
24.136
26.618
28.931
31.051
32.951
34.603
35.983
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49 245.000 127.066 52.934
50 250.000 127.830 52.170
51 255.000 128.262 51.738
52 260.000 128.350 51.650
53 265.000 128.095 51.905
54 270.000 127.500 52.500
55 275.000 126.579 53.421
56 280.000 125.349 54.651
57 285.000 123.834 56.166
58 290.000 122.058 57.942
59 295.000 120.048 59.952
60 300.000 117.831 62.169
61 305.000 115.432 64.568
62 310.000 112.877 67.123
63 315.000 110.189 69.811
64 320.000 107.389 72.611
65 325.000 104.496 75.504
66 330.000 101.529 78,471
67 335.000 98.505 81,495
68 340.000 95.440 84.560
69 345.000 92.349 87.651
70 350.000 89.247 90.753
71 355.000 86.148 93.852
72 360.000 83.068 96.932

81.495
84.560
87.651
90.753
93.852
96.932
99.979

102.977
105.910
108.761
111.509
114.136
116.618
118.931
121.051
122.951
124.603
125.983
127.066
127.830
128.262
128.350
128,095
127.500

98.505
95.440
92.349
89.247
86.148
83.068
80.021
77.023
74.090
71.239
68.491
65.864
63.382
61.069
58.949
57.049
55.397
54.017
52.934
52,170
51.738
51.650
51.905
52.500

-10.681
-6.894
-2.992

0.960
4.896
8.750

12.462
15.981
19.270
22.302
25.061
27.541
29.743
31.672
33.337
34.748
35.914
36.844
37.548
38,032
38.300
38.354
38.196
37.824

37.066
37.830
38.262
38.350
38.095
37.500
36.579
35.349
33.834
32.058
30.048
27.831
25.432
22.877
20.189
17.389
14.496
11.529

8.505
5.440
2.349
0.753
3.852
6.932

The following angles apply for SUMMER

48.820 Sun Angle to S/C Left Side
131.180 Sun Angle to S/C Right Side

Point O_Ang SunFront SunRear SunTop SunBot S/A Rotate SunSA
1 5.000 56.529 123.471 120.807 59.193 37.877 33.471
2 10.000 53.554 126.446 117.525 62.475 35.064 36.446
3 15.000 50.796 129.204 114.117 65.883 31.823 39.204
4 20.000 48.296 131.704 110.607 69.393 28.126 41.704
5 25.000 46.098 133.902 107.016 72.984 23.962 43.902
6 30.000 44.251 135.749 103.361 76.639 19.339 45.749
7 35.000 42.802 137.198 99.658 80.342 14.295 47.198
8 40.000 41.795 138.205 95.923 84.077 8.907 48.205
9 45.000 41.263 138.737 92.167 87.833 3.287 48.737

10 50.000 41.225 138.775 88.405 91.595 -2.421 48.775
11 55.000 41.682 138.318 84.647 95.353 -8.064 48.318
12 60.000 42.619 137.381 80.908 99.092 -13.496 47.381
13 65.000 44.004 135.996 77.200 102.800 -18.598 45.996
14 70.000 45.793 134.207 73.537 106.463 -23.288 44.207
15 75.000 47.941 132.059 69.934 110.066 -27.523 42.059
16 80.000 50.398 129.602 66.411 113.589 -31.290 39.602
17 85.000 53.120 126.880 62.986 117.014 -34.599 36.880
18 90.000 56.064 123.936 59.683 120.317 -37.476 33.936
19 95.000 59.193 120.807 56.529 123.471 -39.951 30.807
20 100.000 62.475 117.525 53.554 126.446 -42.058 27.525
21 105.000 65.883 114.117 50.796 129.204 -43.830 24.117
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22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
4O
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

110.000
115.000
120.000
125.000
130.000
135.000
140.000
145.000
150.000
155.000
160.000
165.000
170.000
175.000
180.000
185.000
190.000
195.000
200.000
205.000
210.000
215.000
220.000
225.000
230.000
235.000
240.000
245.000
250.000
255.000
260.000
265.000
270.000
275.000
280.000
285.000
290.000
295.000
300.000
305.000
310.000
315.000
320.000
325.000
330.000
335.000
340.000
345.000
350.000
355.000
360.0O0

69.393
72.984
76.639
80.342
84.077
87.833
91.595
95.353
99.092

102.800
106.463
110.066
113.589
117.014
120.317
123.471
126.446
129.204
131.704
133.902
135.749
137.198
138.205
138.737
138.775
138.318
137.381
135.996
134.207
132.059
129.602
126.880
123.936
120.807
117.525
114 117
110 607
107 016
103 361

99 658
95 923
92 167
88.405
84.647
80.908
77.200
73.537
69.934
66.411
62.986
59.683

10.607
07.016
03.361
99.658
95.923
92.167
88.405
84.647
80.908
77.200
73.537
69.934
66.411
62.986
59.683
56.529
53.554
50.796
48.296
46.098
44.251
42.802
41.795
41.263
41.225
41.682
42.619
44.004
45.793
47.941
50.398
53.120
56.064
59.193
62.475
65.883
69.393
72.984
76.639
80.342
84.077
87.833
91.595
95.353
99.092

102.800
106.463
110.066
113.589
117.014
120.317

48.296
46.098
44.251
42.802
41.795
41.263
41.225
41.682
42.619
44.004
45.793
47.941
50.398
53.120
56.064
59.193
62.475
65.883
69.393
72.984
76.639
80.342
84.077
87.833
91.595
95.353
99.092

102.800
106.463
110.066
113.589
117.014
120.317
123.471
126.446
129.204
131.704
133.902
135.749
137.198
138.205
138.737
138.775
138.318
137.381
135.996
134.207
132.059
129.602
126.880
123.936

131.704
133.902
135.749
137.198
138.205
138.737
138.775
138.318
137.381
135.996
134.207
132.059
129.602
126.880
123.936
120.807
117.525
114.117
110.607
107.016
103.361

99.658
95.923
92.167
88.405
84 647
80 908
77 200
73 537
69 934
66 411
62 986
59 683
56.529
53.554
50.796
48.296
46.098
44.251
42.802
41.795
41.263
41.225
41.682
42.619
44.004
45.793
47.941
50.398
53.120
56.064

-45.297
-46.483
-47.410
-48.095
-48.550
-48.784
-48.801
-48.600
-48.179
-47.530
-46.640
-45.495
-44.072
-42.349
-40.294
-37.877
-35.064
-31.823
-28.126
-23.962
-19.339
-14.295

-8.907
-3.287

2.421
8,064

13.496
18.598
23.288
27.523
31.290
34.599
37.476
39.951
42.058
43.830
45.297
46.483
47.410
48.095
48.550
48.784
48.801
48.600
48.179
47.530
46.640
45.495
44.072
42.349
40.294

20.607
17.016
13.361

9.658
5.923
2.167
1.595
5.353
9.092

12.800
16.463
20.066
23.589
27.014
30.317
33.471
36.446
39.204
41.704
43.902
45.749
47.198
48.205
48.737
48.775
48.318
47.381
45.996
44.207
42.059
39.602
36.880
33.936
30.807
27.525
24.117
20.607
17.016
13.361

9.658
5.923
2.167
1.595
5.353
9.092

12.800
16.463
20.066
23.589
27.014
30.317
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The following angles apply for FALL

38.361 Sun Angle to S/C Lefl Side
141.639 Sun Angle to S/C Right Side

Point
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

OrbAng
5.000

10.000
15.000
20 000
25 000
30 000
35 000
4O 000
45 000
50 000
55 000
60 000
65 000
70.0OO
75.000
80.000
85.000
90.000
95.000

100.000
105.000
110.000
115.000
120.000
125.000
130.000
135.000
140.000
145.000
150.000
155.000
160.000
165.000
170.000
175.000
180.000
185.000
190.000
195.000
200.000
205.000
210.000
215.000
220.000
225.000
230.000
235.000
240.000

SunFmnt
80.021
77.023
74.090
71.239
68.491
65.864
63.382
61.069
58.949
57.049
55.397
54.017
52.934
52.170
51.738
51.650
51.905
52.500
53.421
54.651
56.166
57.942
59.952
62.169
64.568
67.123
69.811
72.611
75.504
78.471
81.495
84.560
87.651
90.753
93.852
96.932
99.979

102.977
105.910
108 761
111 509
114 136
116 618
118 931
121 051
122 951
124 603
125 983

SunRear
99.979

102.977
105.910
108.761
111.509
114.136
116.618
118.931
121.051
122.951
124.603
125.983
127.066
127.830
128.262
128.350
128.095
127.500
126.579
125.349
123.834
122.058
120.048
117.831
115.432
112.877
110.189
107.389
104.496
101.529

98.505
95.440
92.349
89.247
86.148
83.068
80.021
77.023
74.090
71.239
68.491
65.864
63.382
61.069
58.949
57.049
55.397
54.017

SunTop
126.579
125.349
123.834
122.058
120.048
117.831
115.432
112.877
110.189
107.389
104.496
101.529

98.505
95.440
92.349
89.247
86.148
83.068
80.021
77.023
74.090
71.239
68.491
65.864
63.382
61.069
58.949
57.049
55.397
54.017
52.934
52.170
51.738
51.650
51.905
52.500
53.421
54.651
56.166
57.942
59.952
62.169
64.568
67.123
69.811
72.611
75.504
78.471

SunBot
53.421
54.651
56.166
57.942
59.952
62.169
64.568
67.123
69.811
72.611
75.504
78.471
81.495
84.560
87.651
90.753
93.852
96.932
99.979

102.977
105.910
108.761
111.509
114.136
116.618
118.931
121.051
122.951
124.603
125.983
127.066
127.830
128.262
128,350
128.095
127.500
126,579
125.349
123.834
122.058
120.048
117.831
115.432
112.877
110.189
107.389
104.496
101.529

_A Rotate
37.235
36.421
35.378
34.094
32.561
30.769
28.709
26.372
23.756
20.863
17.704
14.299
10.681

6.894
2.992

-0.960
-4.896
-8.75O

-12.462
-15.981
-19.270
-22.302
-25.061
-27.541
-29.743
-31.672
-33.337
-34.748
-35.914
-36.844
-37.548
-38.032
-38.300
-38.354
-38.196
-37.824
-37.235
-36.421
-35 378
-34 094
-32 561
-30 769
-28 709
-26 372
-23 756
-20 863
-17 704
-14 299

,S¢_SA
9.979

12.977
15.910
18.761
21.509
24.136
26.618
28.931
31.051
32.951
34.603
35.983
37.066
37 830
38 262
38 350
38 095
37 500
36 579
35.349
33.834
32.058
30.048
27.831
25.432
22.877
20.189
17.389
14.496
11.529

8.505
5.440
2.349
0.753
3.852
6.932
9.979

12.977
15.910
18.761
21.509
24.136
26.618
28.931
31.051
32.951
34.603
35.983
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49
5O
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

245.000
250.000
255.000
260.000
265.000
270.000
275.000
280.000
285.000
290.000
295.000
300.000
305.000
310.000
315.000
320.000
325.000
330.000
335.000
340.000
345.000
350.000
355.000
360.000

127.066
127.830
128.262
128.350
128.095
127.500
126.579
125.349
123.834
122.058
120.048
117.831
115.432
112.877
110.189
107.389
104.496
101.529

98.505
95.440
92.349
89.247
86.148
83.068

52.934
52.170
51.738
51.650
51.905
52.500
53.421
54.651
56.166
57.942
59.952
62.169
64.568
67.123
69.811
72.611
75.504
78.471
81.495
84.560
87.651
90.753
93.852
96.932

81.495
84.560
87.651
90.753
93.852
96.932
99.979

102.977
105.910
108.761
111.509
114.136
116.618
118.931
121.051
122.951
124.603
125.983
127.066
127.830
128.262
128.350
128.095
127.500

98.505
95.440
92.349
89.247
86.148
83.068
80.021
77.023
74.090
71.239
68.491
65.864
63.382
61.069
58.949
57.049
55.397
54.017
52.934
52.170
51.738
51.650
51.9O5
52.500

-10.681
-6.894
-2.992

0.960
4.896
8.750

12.462
15.981
19.270
22.302
25.061
27.541
29.743
31.672
33.337
34.748
35.914
36.844
37.548
38.032
38.300
38.354
38.196
37.824

37.066
37.830
38.262
38.350
38.095
37.500
36.579
35.349
33.834
32.058
30.048
27.831
25.432
22.877
20.189
17.389
14.496
11.529

8.505
5.440
2.349
0.753
3.852
6.932
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Appendix A.2

Program SUN_ANGLE3

Listing and Sample Output
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PROGRAM SUN ANGLE3

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

AUTHOR: Gary E. Yale

DATE: Nov 90

OBJECTIVE:
Calculate the eclipse duration for a sunsynchronous orbit at
various times during the year

ASSUMPTIONS:
Circular sunsynchronous orbit
Earth's shadow is a uniform right cylinder

SUPPORT MODULES: ._NGLE
DOT
MAG
ROT1
ROT2
ROT3

VARIBALE DEFINITIONS:

All vectors have three components with their magnitude in the
fourth element of the array.

INPUT VARIABLES:

ALl': Altitude of the S/C orbit (kin)
INCL: Inclination of the S/C orbit (deg)

Longitude of the ascending node on the first day
of winter (deg)

POINTS: The number of locations of the earth in its orbit
around the sun

ORBTRIALS: The number of locations to evaluate in one S/C orbit
at each earth location

OUTPUT VARIABLES: Results are in a file named "Sun Angle3.Out"
as well as printed to the screen

POINT:

BETA:

SUNLEFT(I):

ECLDUR(I):

Counter that indicates which of the particular
earth locations is being evaluated now
Location of S/C in its orbit measured from the

the equator (rad). BETA is converted to degrees
before being printed.
Array containing the values of the incident sun
angle striking the left side of the SIC (Negative
Pitch side) in radians. The array contains POINTS
number of values. Values are converted to degrees
before being printed.
Array containing the values of eclipse duration (min).
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C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

BEGECL:

ENDECI •

The array contains POINTS number of values.
SIC location counter that indicates when eclipse began.
Converted to a time in minutes since crossing the
ascending node before being printed.
SIC location counter that indicates when eclipse ended.
Converted to a time in minutes since crossing the
ascending node before being printed.

LOCAL VARIABLES:

LASTECL:

EQ._G:

ECLEND:

ANYECl •

SAVEND:

E-CLANG:
I:
J:
DEG2RAD:
RAD2DEG:
TILT:
NM2KM:
RE:
MU:
SUNS(4):
SUN1(4):
SUN2(4):
SUN3(4):
SUN4(4):
SUNB(4):
R(4):
LEFTB(4):
STEP:

THETA:
PERIOD:
ORBRATE:
INCREM:

Character variable
Y: Previous S/C location was in eclipse
N: Previous SIC location was not in eclipse

Character variable
Y: Hold a location as a possible eclipse entry
N: No eclipse entry has been found so far in this

orbit
Character variable

Y: Hold a location as a possible eclipse exit
N: No eclipse exit has been found so far in this

orbit
Character variable

Y: At least a portion of an eclipse has been found
in this S/C orbit

N: No eclipse has been found so far in this orbit
Character variable

Y: Eclipse end has been found. Do not update
its counter anymore

N: Eclipse end has not been found. Continue to
update its counter

Number of SIC location step sizes that make up eclipse
Loop counter. Indicates earth's location wrt sun
Loop counter. Indicates S/C's location wrt to earth
Conversion Factor from degrees to radians (rad/deg)
Conversion Factor from radians to degrees (deg/rad)
Tilt of Earth's spin axis wrt normal to ecliptic (rad)
Conversion Factor from nautical miles to kilometers (km/nm)
Radius of Earth (km)
Gravitational Parameter of Earth (km^3/sec^2)
Vector from S/C to sun in "Sun Coordinates"
Sun Vector in an intermediate coordinate system
Sun Vector in an intermediate coordinate system
Sun Vector in an intermediate coordinate system
Sun Vector in an intermediate coordinate system
Sun Vector in body coordinate system
S/C position vector (km)
Vector normal to SIC left face (negative pitch face)
Angular displacement between consecutive evaluation
locations of the earth (rad)
Dummy angle used in several coordinate rotations (rad)
S/C orbital period (rain)
S/C angular velocity (tad/rain)
Angular displacement of earth from the first day of
winter in its orbit around sun (red)
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C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

PHI:
RPERP:

Angle between SIC position vector and sun vector
Component of SIC position vector perpendicular to sun
vector

_INATE SYSTEMS:

System:
Origin:
Principle Axis:
Second Axis:
Third Axis:
Principle Plane:

Sun (Denoted by "S")
Center of Earth
Directly at sun
Complete Right Hand Coordinate System
Perpendicular to Ecliptic (+ "North")
Ecliptic

System:
Origin:
Principle Axis:

Second Axis:
Third Axis:

Principle Plane:

Sun (Denoted by "1")
Center of Earth

Intersection of Ecliptic and Equator (where one
dips below ecliptic when traveling eastward
along equator
Complete Right Hand Coordinate System
Perpendicular to Ecliptic (+ "North")
Ecliptic

System:
Origin:
Principle Axis:

Second Axis:
Third Axis:
Principle Plane:

Sun (Denoted by "2")
Center of Earth

Intersection of Ecliptic and Equator (where one
dips below ecliptic when traveling eastward
along equator
Along North Pole
Complete Right Hand Coordinate System
Contains earth's spin axis and the intersection
of the ecliptic plane with the equatorial plane

System:
Origin:
Principle Axis:
Second Axis:
Third Axis:
Principle Plane:

Sun (Denoted by "3")
Center of Earth
Ascending Node
Along North Pole
Complete Right Hand Coordinate System
Contains earth's spin axis and the ascending node

System:
Origin:
Principle Axis:
Second Axis:
Third Axis:

Principle Plane:

Sun (Denoted by "4")
Center of Earth
Ascending Node
Complete Right Hand Coordinate System
Perpendicular to S/C Orbital Plane (along orbit
angular momentum vector)
S/C orbit plane

System:
Origin:
Principle Axis:
Second Axis:
Third Axis:

Principle Plane:

Body (Denoted by "B")
Center of SIC

Out S/C Top (Away from Earth) (Yaw)
Out S/C Front (Along velocity vector) (Roll)
Out S/C Lefl (Pitch)
Local Horizontal
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EXTERNAL ANGLE
EXTEFCqALDOT

CHARACTER*I LASTECL., ECLBEG, ECLEND, ANYECL, SAVEND

INTEGER t, J, POINTS, ORBTRtALS

REAL*8 ANGLE, DOT
REAL*8 TILT,DEG2RAD, RAD2DEG, NM2KM, RE, MU
REAL*8 ALT, INCL, OMEGA
REAL*8 SunS(4), Sun1(4), Sun2(4), Sun3(4), Sun4(4), SunB(4)
REAL*8 R(4), ECLDUR(180)
REAL°8 LeftB(4)
REAL*8 SunLeft(180)
REAL*8 BETA, STEP, THETA, PERIOD, OrbRale, INCREM, PHI
REAL*8 RPERP, ECLANG, BEGECL ENDECL

OPEN (UNIT = 8, FILE = 'Sun Angle3.Out', STATUS = 'NEW')

C
C Initialize useful constants
C

DEG2RAD = PI / 180.0D0
RAD2DEG = 180.0D0 / PI
TILT = 23.5D0 * DEG2RAD
NM2KM = 1.852D0
RE = 6378.135D0
MU -- 398600.8D0

C
C Get input values
C

WRITE(*,*)'Orbit Altitude (nm)?'
READ(*,*) ALT
WRITE(*,*)'Orbit Inclination (deg)?'
READ(*,*) INCL
WRITE(*,*)'Orbit Longitude of the Ascending Node (deg)'
WRITE(*,*)' on the first day of winter?'
READ(*,*) OMEGA
WRITE(*,*)'Number of points to evaluate in one year'
READ(*,*)POINTS
WRITE(*,*)'Number of points to evaluate in one S/C orbit'
READ(*,*)ORBTRIALS

C
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C Echo check input values to output file and screen
C

WRITE(8,1000)
WRITE(8,1010) ALT
WRITE(8,1020) INCL
WRITE(8,1030) OMEGA
WRITE(8,1040) POINTS
WRITE(8,1050) ORBTRIALS

C
C Convert units
C

ALT = ALT * NM2KM
INCL = INCL * DEG2RAD
OMEGA = OMEGA * DEG2RAD

C
C Initialize the S/C position vector.
C Express it in body coordinates.
C

R(1) = RE + ALT
9(2) = 0.0D0
R(3) = 0.0D0
CALL MAG(R)

C
C Calculate the orbital period (min) and angular velocity (rad/min)
C

PERIOD = (2.0D0 * PI / 60.0D0) * SQRT( R(4)**3 / MU)
OrbRate = 2.0D0 * PI / PERIOD

C
C Initialize the vector normal to SIC left face
C

LeftB(1) = 0.0D0
LeftB(2) = 0.0D0
LeftB(3) = 1.0D0
CALL MAG(LeftB)
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C
C Direction of the sun vector expressed in sun coordinates
C SunS = (1)$1 + (0)$2 + (0)$3
C

SunS(l) = 1.0D0
SunS(2) = 0.0D0
SunS(3) = 0.0D0
CALL MAG(SunS)

C
C Find the interval between earth locations (rad)
C

STEP = 2.0D0 * PI/POINTS

C
C Write the output header
C

WRITE(*,1070)
WRITE(8,1070)

C

C Begin the loop that advances the earth in its orbit around sun
C

DO 40 I= 1, POINTS

C
C
C
C
C
C
C

Perform the rotations necessary to express the sun vector in body
coordinates at the ascending node. Refer to the coordinate
system definitions in the header block. The rotation about the
second axis from System "2" to System "3" accounts for the sun-
synchronous motion of the orbit around the equator.

THETA = PI/2.0D0 - STEP * I
CALL ROT3(SUNS, THETA, SUN1 )
THETA = PI/2.0D0 - TILT

CALL ROTI(SUN1, THETA, SUN2)
THETA = OMEGA + STEP * I
CALL ROT2(SUN2, THETA, SUN3)
THETA = INCL- PI/2.0D0
CALL ROT1 (SUN3, THETA, SUN4)
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C
C
C
C
C
C
C

The vector out the S/C left face remains in the same inertial
direction as the SIC moves in its orbit. Once the sun vector

is expressed in the "4" coordinate system, it can be compared to
the vector out the left face. The angle between these two vectors
is the sun angle on the S/C left face for this earth location.

SUNLEFT(I) = ANGLE(SUN4, LEFTB)
BETA = STEP ° I

C
C Initialize Eclipse markers and counters for this earth location
C

BEGECL = 0.0D0
ENDECL = 0.0D0
LASTECL = 'N'
ECLBEG = 'N'
ECLEND ='N'
ANYECL = 'N'
SAVEND = 'N'

C

C Begin the loop that advances the SIC in its orbit around earth
C

DO 20 J = 1,ORBTRIALS

C

C Express the sun vector in body coordinates for this S/C location.
C

INCREM = J * (2.0D0 * PI / ORBTRIALS)
CALL ROT3(SUN4, INCREM, SUNB)

C
C In order for the S/C to be in eclipse, it must be:
C 1) over the dark side of the earth
C and 2) in the earth's shadow
C
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C
C Find the angle between the sun vector and the SIC position vector.
C

PHI = ANGLE(R, SUNB)

C
C Is the S/C over the dark side of the earth?
C Yes if Phi is greater than 90 degrees
C No if Phi is less than 90 degrees
C

IF (PHI .GT. PI/2.0DO) THEN

C
C Find the component of S/C position perpendicular to sun vector.
C

RPERP = R(4) * DSIN(PHI)

C

C Is the S/C in the earth's shadow?
C Yes if RPerp is less than or equal to the radius of the earth
C No if RPerp is greater than the radius of the earth
C

IF(RPERP .LE. RE) THEN

C
C The remaining logic in this DO Loop, updates the appropriate
C eclipse markers and counters to determine the start and stop
C locations of the eclipse.
C

IF (LASTECL .EQ. 'Y') THEN
IF (SAVEND .EQ. 'N') THEN

ECLEND = 'Y'
ENDECL = J

ENDIF
ELSE

IF (ANYECL .EQ. 'N') THEN
ANYECL = 'Y'
ECLEND = 'Y'
ENDECL = J

ENDIF
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ECLBEG = 'Y'
BEGECL = J
LASTECL = 'Y'

ENDIF
ELSE

LASTECL = 'N'
IF(EOLEND .EQ. 'Y') THEN

SAVEND = 'Y'
ENDIF

ENDIF
ENDIF

C
C Return to inner DO LOOP (advance S/C in orbit around earth)
C

2 0 CONTINUE

C
C
C
C
C
C
C
C
C

Determine the length of eclipse using the begining & end markers.
If the difference is negative, the SIC is in eclipse as it crosses
the ascending node. Adding the number of S/C locations evaluated
to the negative value converts the duration to an equivalent
positive value. Eclipse duration is found by dividing the number
of S/C locations involved in eclipse by the angular displacement
between consecutive locations and the angular velocity.

ECLANG = ENDECL - BEGECL
IF (DABS(ECLANG) .LT. 0.0001) THEN

ECLDUR(I) = 0.0D0
ELSE

IF (ECLANG .LT. 0.0D0) THEN
ECLANG = ECLANG + ORBTRIALS

ENDIF

ECLDUR(I) = ECLANG * 2.0D0 * PI / (ORBTRIALS * OrbRate)
ENDIF

C
C Convert output angles to degrees
C Convert eclipse markers to times since crossing the ascending node
C Output values
C

3O WRITE(*,1080) I, BETA*RAD2DEG, SunLeft(I)*RAD2DEG, ECLDUR(I),
+ BEGECL*360.0d0/ORBTRIALS, ENDECL*360.0d0/ORBTRIALS

WRITE(8,1080) I, BETA*RAD2DEG, SunLeft(I)*RAD2DEG, ECLDUR(I),
+ BEGECL*360.0d0/ORBTRIALS, EN DECL*360.0d0/ORBTRIALS

156



C

C Return to outer DO LOOP (advance earth in orbit around sun)
C

40 O3N/INUE

1000 FORMAT(///)
1010 FORMAT(15X,F7.3,' Orbit Altitude (nm)')
1020 FORMAT(15X,F7.3,' Orbit Inclination (deg)')
1030 FORMAT(15X,F7.3,' Orbit Longitude of the Ascending Node (deg)'J,

+ 14X,' on the first day of Winter')
1040 FORMAT(15X,17,' Number of points to evaluate in one year')
1050 FORMAT(15X,17,' Number of points to evaluate in one SIC orbit') 1 070

FORMAT(/,15X,'Point OrbAng SunLeft Eclipse (min)',
+ ' Entry (deg) Exit (deg)')

1080 FORMAT(15X,14,3F10.3,7X, F10.3,F11.3)
END

SUBROUTINE ROTI(VIN, T, VOUT)

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

AUTHOR: Gary E. Yale

DATE: Nov 90

OBJECTIVE: Expresses a vector in a coordinate system which is
rotated T radians around the first axis as compared to the
original coordinate system

SUPPORT MODULES: MAG

I/I/U//// VARIABLE DEFINITIONS \\\\\\\\\\

All vectors have three components and their magnitude is in the
fourth position

INPUT VARIABLES:

VIN: Input vector
T: Angle of rotation (rad)

OUTPUT VARIABLES:

VOUT: Output vector
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C
C
C
C
C

LOCAL VARIABLES:

C: Cosine of the input angle, T
S: Sine of the input angle, T
TEMP: Temporary storage location

C

REAL°8 VIN(4), T, VOUT(4)
REAL°8 C, S, TEMP
TEMP = VIN(3)
C = DCOS(T)
S = DSIN(T)
VOUT(3) = C * VIN(3) - S * VIN(2)
VOUT(2) = C * VIN(2) + S * TEMP
VOUT(1) = VIN(1)
CALL MAG(VOUT)
RETURN
END

SUBROUTINE ROT2(VIN, T, VOUT)

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

AUTHOR: Gary E. Yale

DATE: Nov 90

OBJECTIVE: Expresses a vector in a coordinate system which is
rotated T radians around the second axis as compared to the

original coordinate system

SUPPORT MODULES: MAG

//111/I/// VARIABLE DEFINITIONS \\\\\\\\\\

All vectors have three components and their magnitude is in the
fourth position

INPUT VARIABLES:

VIN: Input vector
T: Angle of rotation (rad)

OUTPUT VARIABLES:

VOUT: Output vector

LOCAL VARIABLES:
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C
C C: Cosine of the input angle, T
C S: Sine of the input angle, T
C TEMP: Temporary storage location
C

REAL*8 VIN(4), T, VOUT(4)
REAL'8 C, S, TEMP
TEMP. VIN(3)
c = DCOS('I")
S = DSIN(T)
VOUT(3) = C * VIN(3) + S * VIN(1)
VOUT(1) = C * VIN(1) - S * TEMP
VOUT(2) = VIN(2)
CALLMAG(VOUT)
RETURN
END

SUBROUTINE ROT3(VIN, T, VOUT)

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

AUTHOR: Gary E. Yale

DATE: Nov 90

OBJECTIVE: Expresses a vector in a coordinate system which is
rotated T radians around the third axis as compared to the
original coordinate system

SUPPORT MODULES: MAG

/I/I/fill/ VARIABLE DEFINITIONS \\\\\\\\\\

All vectors have three components and their magnitude is in the
fourth position

INPUT VARIABLES:

VIN: Input vector
T: Angle of rotation (rad)

OUTPUT VARIABLES:

VOUT: Output vector

LOCAL VARIABLES:

C: Cosine of the input angle, T
S: Sine of the input angle, T
TEMP: Temporary storage location
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C

REAL*8 VIN(4), T, VOUT(4)
REAL*8 C, S, TEMP
TEMP = VIN(2)
C = DCOS(T)
S - DSIN(T)
VOUT(2) = C * VIN(2) - S * VIN(1)
VOUT(1) = C * VIN(1) + S * TEMP
VOUT(3) = VIN(3)
CALL MAG(VOUT)
RETURN
END

SUBROUTINE MAG(VECT)

C
C AUTHOR: Gary E. Yale
C
C DATE: Nov 90
C

C OBJECTIVE: Find the magnitude of a vector and store that value
C as the fourth element of the vector array
C
C SUPPORT MODULES: NONE
C
C ////////// VARIABLE DEFINITIONS \\\\\\\\\\
C
C All vectors have three components and their magnitude is in the
C fourth position
C
C INPUT VARIABLES:
C
C VECT: Vector with an unknown value for its magnitude
C
C OUTPUT VARIABLES:
C
C VECT: Vector with its magnitude as the fourth element
C
C LOCAL VARIABLES: NONE
C

REAL*8 VECT(4)
VECT(4) = DSQRT( VECT(1)**2 + VECT(2)**2 + VECT(3)**2 )
RETURN
END
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FUNCTION ANGLE (VECTA, VECTB)

C

C AUTHOR: Gary E. Yale
C
C DATE: Nov 90
C
C OBJECTIVE: Find the angle between two vectors using the property
C of the dot product (the angle is the inverse cosine of the dot
C product divided by the product of their magnitudes)
C
C SUPPORT MODULES: DOT
C
C ////////// VARIABLE DEFINITIONS \\\\\\\\\\
C
C All vectors have three components and their magnitude is in the
C fourth position
C
C INPUT VARIABLES:
C
C VECTA: One of the vectors defining an angle
C VECTB: Second vector defining an angle
C
C OUTPUT VARIABLES:
C
C ANGLE: The angle between the two vectors (rad)
C
C LOCAL VARIABLES: NONE
C

EXTERNAL DOT

REAL*8 VECTA(4), VECTB(4)
REAL'8 ANGLE
ANGLE = DACOS( DOT(VECTA, VECTB) / (VECTA(4) * VECTB(4)) )
RETURN
END

FUNCTION DOT (VECTA, VECTB)

C
C
C
C
C
C
C
C
C
C

AUTHOR: Gary E. Yale

DATE: Nov 90

OBJECTIVE: Find the dot product of two vectors

SUPPORT MODULES: NONE

////////// VARIABLE DEFINITIONS \\\\\\\\\\

161



C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

All vectors have three components and their magnitude is in the
fourth position

INPUT VARIABLES:

VECTA: First vector
VECTB: Second vector

OUTPUT VARIABLES:

DOT: Dot product of two vectors

LOCAL VARIABLES: NONE

REAL*8 VECTA(4), VECTB(4)
REAL*8 DOT
DOT = VECTA(1)"VECTB(1) + VECTA(2)*VECTB(2) + VECTA(3)"VECTB(3)
RETURN
END
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450.000
98.750
37.500

72
360

Orbit Altitude (nm)
Orbit Inclination (deg)
Orbit Longitude of the Ascending Node (deg)
on the first day of Winter
Number of points to evaluate in one year
Number of points to evaluate in one SIC orbit

Point
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

OrbAng
5.000

10.000
15.000
20.000
25.000
30.000
35.000
40.000
45.0O0
50.000
55.000
60.000
65.000
7O.0O0
75.000
80.000
85.O00
90.000
95.000

100.000
105.000
110 000
115 000
120 000
125 000
130 000
135 000
140 000
145 000
150.000
155.000
160.000
165.000
170.000
175.000
180.000
185.000
190.000
195.000
200.000
205.000
210.000
215.000
220.000
225.000
230.000

SunLe_
38.340
37.878
37.391
36.895
36.410
35.954
35.549
35.215
34.971
34.834
34.819
34.935
35.189
35.581
36.105
36.753
37.510
38.361
39.285
40.262
41.272
42.292
43.302
44.281
45.212
46.077
46.862
47.552
48.138
48.608
48.958
49.182
49.279
49.249
49.094
48.820
48.434
47.945
47.365
46.707
45.986
45.217
44.419
43.609
42.806
42.027

Eclipse (min)
23.137
22.573
22.009
21.726
21.444
20.598
20.316
20.034
19.751
19.469
19.469
19.751
20.034
20.316
20.880
21.444
22.291
23 137
23 702
24 266
25 112
25 959
26 241
26 805
27.370
27.934

27.934
28.216
28.498
28.781
29.063
29.063
29.063
29.063
29.063
28.781
28.781
28.498
28.216
27.934
27.652
27.370
27.088
26.241
25.959
25.395
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47
48
49
5O
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
7O
71
72

235 000
240 000
245 000
250 000
255 000
260 000
265 000
270 000
275 000
280 000
285 000
290 000
295.000
300 000
305 000
310 000
315 000
320 000
325 000
330 000
335 000
340 000
345 000
350.000
355.000
360.000

41.290
40.612
40.006
39.484
39.055
38.725
38.494
38.361
38.318
38.357
38.465
38.628
38.829
39.051
39.279
39.496
39.687
39.839
39.939
39.980
39.954
39.856
39.686
39.444
39.134
38.763

25.112
24.548
24.266
23.702
23.702
23.419
22.855
23.137
23.137
22.855
22.855
23.137
23.419
23.419
23.702
23.984
23.984
23.984
24.266
24.266
24.266
24.266
23.984
23.702
23.419
23.137



Appendix A.3

Program ALTITUDE

Listing and Sample Output
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PROGRAM ALTITUDE

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

AUTHOR: Gary E. Yale

DATE: Nov 90

OBJECTIVE:
Find the time a S/C spends traversing uniform user selected
altitude increments from perigee to apogee. Due to the symmetry
of elliptical orbits, the total time spent in a particular
altitude range during one orbit is twice the amount shown in
this program's output.

ASSUMPTIONS:
Elliptical orbit.

SUPPORT MODULES: None.

III/////// VARIABLE DEFINITIONS \\\\\\\\\\

INPUT VARIABLES:

Period: Orbit period (hrs)
Altp: Perigee altitude (km)
Step: Altitude step size (km)

OUTPUT VARIABLES: Results are in the file "Altitude.Out"

AIt:
Nu:
DT:
TotalT:

Altitude (km)
True Anomaly (deg)
Time spent in a particular altitude window (min)
Elapsed Time since perigee (min)

LOCAL VARIABLES:

Again:

Re-

Mu:

DEG2RAD:
Semi:
Ecc:
TO:
TI:

T2:

F.Arlom:

Alia:
Index:

Used to determine if the user wants to run another
case
Radius of the Earth (kin)
Gravitational Parameter for the Earth (km^3/sec^2)
Conversion factor from degrees to radians (rad/deg)
Semimajor axis (km)
Eccentricity
Time since perigee at perigee (always zero) (sec)
Mean Anomaly at the low altitude portion of an
altitude window (tad)
Mean Anomaly at the high altitude portion of an
altitude window (tad)
Eccentric Anomaly at the high altitude portion of an
altitude window (rad)
Apogee altitude (kin)
Integer number of altitude windows to evaluate from
perigee to apogee
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C Low: Integer number of altitude windows from the surface of
C the earth to perigee
C High: Integer number of altitude windows from the surface of
C the earth to apogee
C

CHARACTER*I Again

INTEGER Low, High, Index

REAL*8 Period, Altp, Step
REAL*8 AIt, Nu, DT, TotalT
REAL*8 Re, Mu, DEG2RAD
REAL*8 Semi, Ecc, TO, T1, T2, EAnom, Alta

C

C Open the output file.
C

OPEN (Unit = 8, File = 'Altitude.Out', Status = 'New')

C
C Initialize useful constants.
C

Re = 6378.135d0
Mu = 398600.8d0
DEG2RAD = PI/ 180.0D0

C

C Get the orbital period, perigee altitude, and altitude window
C size. Echo check them to the output file.
C

10 Write(*,*)'Enter the orbital period in hours'
Read(*,*)Period
Write(*,*)'Enter the perigee altitude in kilometers'
Read(*,*)Altp
Write(*,*)'Enter the altitude step size to use (kin)'
Read(*,*)Step

Write(*,900)
Write (*,910) Period
Write(*,920)Altp
Write(*,930)Step
Write(*,900)
Write(8,900)
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Write(8,910)Period
Write(8,920)Altp
Write(8,930)Step
Write(8,900)

C
C Calculate:
C semimajor axis (kin)
C eccentricity
C apogee altitude (kin)
C

Semi = ((((3600.0d0*Period)/(2.0d0"Pi))*'2)'Mu)"(1.0d0/3.0d0)
Ecc = (Semi - (Re + Altp))/Semi
Alta = 2.0d0 " Semi - 2.0d0 " Re - Altp

C

C Determine the index on the "DO" loop for calculating the output
C parameters.
C

Low = DINT(Altp/Step)
High = DINT(Alta]SIep)
Index = 1 + (High - Low)

C
C
C
C
C
C
C

Define the time of perigee passage to be the start of the orbit
by setting TO equal to zero.
Initialize the Mean Anomaly at the low altitude portion of an
altitude window to zero. The low altitude portion of the first
window is perigee.

TO = 0.0d0
T1 = 0.0d0

C
C Write the header for the output table.
C

WRITE(*,1000)
WRITE(8,1000)
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C
C Initialize True Anomaly for the first point (perigee).
C Zero out the time spent in an altitude window.
C

Nu = 0.Od0
DT = 0.0d0

C
C Convert true anomaly from radians to degrees.
C Write the output variables to the output file for the first
C point (perigee).
C

WRITE(*,1010)AIIp, Nu/DEG2RAD, DT, TO
WRITE(8,1010)Altp, Nu/DEG2RAD, DT, TO

C
C Begin the iteration to find the output variables for each of the
C altitude windows.
C

DO 500 I = 1, Index

C
C
C
C
C
C
C
C
C
C
C
C
C

Look to see if this iteration is the last one or not.
If it is the last iteration:

- the upper limit on the altitude window is the apogee altitude
- the true anomaly is _ rad
- the mean anomaly is _ rad

If it is not the last iteration:
- the upper limit on the altitude window is the altitude step

size times the number of steps from the surface of the earth
- calculate the true anomaly at the upper altitude limit (rad)
- calculate the eccentric anomaly for the same point (rad)
- calculate the mean anomaly for the same point (rad)

IF (I .EQ. Index) THEN
AIt = Alta
Nu = Pi
T2 = Pi

ELSE
AIt = Step * (Low + I)
R = Re + AIt

Nu = DACOS((Semi*(I.0d0 Ecc**2)/R -1.0d0)/Ecc)
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EAnom = DACOS((Ecc + DCOS(Nu))/(1.0d0 + Ecc*DCOS(Nu)))
T2 = EAnom - Ecc * DSIN(EAnom)

ENDIF

C
C
C
C
C
C
C
C

Calculate the time spent in this altitude window and convert to
minutes. (change in mean anomaly divided by mean motion)

Calculate the time since perigee to reach the upper limit of this
altitude window and convert to minutes. (change in mean anomaly
from perigee divided by mean motion)

DT = DSQRT(Semi**3/Mu) * (T2 - T1) / 60.0d0
TotalT = DSQRT(Semi**3/Mu) * (T2 - TO) / 60.0d0

C
C Convert true anomaly to degrees.
C Write the the output variables to the output file.
C

WRITE(*,1010)AIt, Nu/DEG2RAD, DT, TotaIT
WRITE(8,1010)AIt, Nu/DEG2RAD, DT, TotalT

C
C The mean anomaly at the upper limit of this altitude window
C becomes the mean anomaly at the lower limit of the next altitude
C window.
C

T1 = T2

C
C Repeat the iteration.
C

500 CONTINUE

C
C See if there is another case.
C

Write(*,900)
Write(*,*)'Do you have another case?'
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Write(*,*)' Enter "y" or "n"
Read(*,*)Again
IF ((AGAIN .EQ. "Y') .OR. (AGAIN .EQ. "y")) THEN

GOTO 10
ENDIF

900 FORMAT (///)
910 FORMAT (10X,' Orbital Period (hrs) -',F9.3)
920 FORMAT (10X,' Perigee Altitude (kin) =',F9.3)
930 FORMAT (10X,'Altitude Step Size (kin) =',F9.3)

1000 FORMAT (26X,'True Delta Elapsed'J,12X,
+'Altitude Anomaly Time Time'J,11 X,
+' (kin) (deg) (rain) (min)')

1010 FORMAT (11X,F9.3,4X,F7.3,4X,F5.2,4X,F7.3)
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Orbital Period (hrs) =
Perigee Altitude (km) =

Altitude Step Size (km) =

8.000
500.000
100.000

Altitude
(km)

500.000
600.000
700.000
800.000
900.0O0

1000.000
1100.000
1200.000
1300.000
1400.000
1500.000
1600.000
1 700.000
1800.000
1900.000
2000.000
2100.000
2200.000
2300.000
2400.000
2500.000
2600.000
2700.000
2800.000
2900.000
3000.000
3100 000
3200 000
3300 000
3400 000
3500 000
3600 000
3700 000
3800 000
3900 000
4000 000
4100 000
4200 000
4300 000
4400 000
4500 000
4600 000
4700 000
4800 000
4900 000
5000 000

True

Anomaly
(deg)
0.000

15.421
21.718
26.491
30.466
33.926
37.019
39.830
42.417
44.820
47.069
49.184
51.184
53.083
54.891
56.617
58.271
59.858
61.384
62.855
64.273
65.644
66.971
68.256
69.502
70.712
71.888
73.032
74.145
75.230
76.288
77.319
78.326
79.310
80.272
81.212
82.132
83.033
83.915
84.780
85.627
86.458
87.273
88.073
88.859
89.631

Delta
Time

(min)
0.00
3.17
1.34
1.04
0.89
0.80
0.74
0.69
0.65
0.62
0.59
0.57
0.56
0.54
0.53
0.52
0.51
0.50
0.49
0.48
0.48
0.47
0.47
0.46
0.46
0.45
0.45
0.45
0.44
0.44
0.44
0.44
0.44
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43

EL osed
Time

(min)
0.000
3.175
4.515
5.559
6.454
7.255
7.990
8.677
9.326
9.944

10.538
11.111
11.666
12 207
12 735
13 251
13 757
14 255
14 744
15 227
15 704
16 175
16 640
17 102
17 559
18 013
18 464
18 911
19 356
19 799
20 239
20 677
21 114
21 549
21 982
22 415
22 846
23 276
23 706
24 134
24 563
24 990
25 418
25 845
26 272
26 698
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5100.000
5200.000
5300.000
5400.000
5500.000
5600.000
5700.000
5800.000
5900.000
6000.000
6100.000
6200.000
6300.000
6400.000
6500.000
6600.000
6700.000
6800.000
6900.000
700O.OOO
7100.000
7200.000
7300.000
7400.000
7500.000
7600.000
7700.000
7800.000
7900.000
80O0.0O0
8100.000
8200.000
8300.000
8400.000
8500.000
8600.000
8700.000
88OO.0OO
8900.000
9000.000
9100.000
9200.000
9300.000
9400.000
9500.000
9600.000
9700.000
9800.000
9900.000

10000.000
10100.000
10200.000
10300.000
10400.000

90.389
91.134
91.866
92.587
93.295
93.992
94.679
95.354
96.020
96.675
97.321
97.957
98.585
99.203
99.813

100.415
101.009
101.594
102.173
102.743
103.307
103.863
104.413
104.956
105.493
106.023
106.547
107.065
107.578
108.084
108.585
109.081
109.571
110.056
110.536
111.011
111.482
111.947
112.408
112.865
113.317
113.765
114.209
114.648
115.084
115.515
115.943
116.367
116.788
117.204
117,618
118.027
118.434
118.837

0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.44
0.44
0.44
0.44
0.44
0.44
0.44
0.44
0.44
0.44
0.45
0.45
0.45
0.45
0.45
0.45
0.45
0.45
0.46
0.46
0.46
0,46
0.46
0.46
0.47
0.47
0.47
0.47
0.47
0.47
0.48
0.48
0.48
0.48
0.48
0.48
0.49
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27.125
27.552
27.979
28.406
28.833
29.261
29.689
30.117
30.546
30.975
31.405
31.836
32.267
32.699
33.131
33.565
33.999
34.434
34.870
35.307
35.745
36.184
36.625
37,066
37.508
37.951
38.396
38.842
39.289
39,737
40.186
40.637
41.089
41.543
41.998
42.454
42.912
43,372
43 832
44 295
44 759
45 224
45 691
46 160
46 630
47 102
47 576
48 051
48.528
49.007
49,488
49.970
5O.455
50.941



10500.000
10600.000
10700.000
10800.000
10900.000
11000.000
11100.000
11200.000
11300.000
11400.000
11500.000
11600.000
11700.000
11800.000
11900.000
12000.000
12100.000
12200.000
12300.000
12400.000
12500.000
12600.000
12700.000
12800.000
12900.000
13000.000
13100.000
13200.000
13300.000
13400.000
13500,000
13600.000
13700.000
13800.000
13900.000
14000.000
14100.000
14200.000
14300.000
14400.000
14500.000
14600.000
14700.000
14800.000
14900.000
15000.0OO
15100.000
15200.000
15300.000
15400.000
1550O.O0O
15600.000
15700.000
15800.000

119.237
119.633
120.027
120.418
120.805
121.190
121.572
121.951
122.327
122.700
123.071
123.440
123.805
124.169
124.530
124.888
125.244
125.598
125,950
126.299
126.647
126,992
127.335
127.676
128.015
128.352
128.688
129.021
129.353
129.682
130.010
130.336
130.661
130,984
131.305
131,625
131,943
132,260
132.575
132.889
133,201
133,512
133.821
134.130
134.436
134,742
135.046
135.350
135.651
135.952
136.252
136.551
136.848
137.144

0.49
0.49
0.49
0.49
0.50
0.50
0.50
0.50
0.50
0.51
0.51
0.51
0.51
0.51
0.52
0.52
0.52
0.52
0.53
0.53
0.53
0.53
0,54
0.54
0.54
0.54
0.55
0.55
0.55
0.55
0.56
0.56
0.56
0.56
0.57
0.57
0.57
0.58
0.58
0.58
0.58
0.59
0.59
0.59
0.60
0.60
0.60
0.61
0.61
0.61
0.62
0.62
0.62
0.63
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51 429
51 919
52 411
52 905
53 400
53 898
54.398
54.900
55.404
55.910
56.418
56.928
57.441
57.956
58.472
58.991
59.513
60.036
60.562
61.091
61.621
62.154
62.690
63.228
63.768
64.311
64.856
65.404
65.955
66.508
67.064
67.622
68.184
68.747
69.314
69.884
70.456
71.031
71.609
72.190
72.774
73.361
73.951
74.544
75.140
75.739
76.341
76.947
77.556
78.168
78.783
79.402
80.024
80.650
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15900.000
16000.000
16100.000
16200.000
16300.000
16400.000
16500.000
16600.000
16700.000
16800.000
16900.000
17000.000
17100.000
17200.000
17300.000
17400.000
17500.000
17600,000
17700.000
17800.000
17900,000
18000.000
18100.000
18200.000
18300.000
18400.000
18500.000
18600.000
18700.000
18800.000
18900.000
19000.000
19100.000
19200.000
19300.000
19400.000
19500.000
19600.000
19700.000
19800.000
19900.000
20000.000
20100.000
20200.000
20300.000
20400.000
20500.000
20600.000
20700.000
20800.000
20900.000
21000.000
21100.000
21200.000

137.440
137.734
138.028
138.320
138.612
138.903
139.192
139.481
139.770
140.057
140.344
140.630
140.915
141.199
141.483
141.767
142.049
142.331
142.613
142.894
143.174
143.454
143.734
144.013
144.292
144.570
144,848
145.126
145.403
145.680
145.957
146.234
146.510
146.786
147.063
147.339
147.615
147.891
148.167
148.443
148.719
148.995
149.271
149.548
149.824
150.101
150.378
150.656
150.933
151.212
151.490
151.769
152.049
152.329

0.63
0.63
0.64
0.64
0.64
0.65
0.65
0.65
0.66
0.66
0.67
0.67
0.67
0.68
0.68
0.69
0.69
0.70
0.70
0.71
0.71
0.71
0.72
0.72
0.73
0.73
0.74
0.74
0.75
0.75
0.76
0.76
0.77
0.78
0.78
0.79
0.79
0.80
0.81
0.81
0.82
0.83
0.83
0.84
0.85
0.85
0.86
0.87
0.87
0.88
0.89
0.90
0.91
0.91

81.279
81.911
82.548
83.188
83.831
84.478
85.130
85.784
86.443
87.106
87.772
88.443
89.118
89.797
90.480
91.167
91.859
92.555
93,256
93.961
94.670
95.384
96.103
96.827
97.556
98.289
99.028
99.772

100.521
101.275
102 034
102 799
103 570
104 346
105 128
105 916
106 709
107.509
108.315
109.127
109.946
110.771
111.603
112,441
113.287
114.139
114.999
115.866
116.740
117.622
118.512
119.411
120.317
121.231
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21300.000
21400.000
21500.000
21600.000
21 700.000
21800.000
21900.000
22000.000
22100.000
22200.000
22300.000
22400.000
22500.000
22600.000
22700.000
22800.000
22900.000
23000 000
23100 000
23200 000
23300 000
23400 000
23500 000
23600 000
23700 000
23800.000
23900.000
24000.000
24100.000
24200.000
24300.000
24400.000
24500 000
24600 000
24700 000
24800 000
24900 000
25000 000
25100 000
25200.000
25300.000
25400.000
255OO.O0O
25600.000
25700.000
25800.000
25900.000
26000.000
26100.000
26200.000
26300.000
26400.000
26500.000
26600.000

52.609
52.890
53.172
53.455
53.738
54.022
54.308
54.594
54.881
55.169
55.458
55.748
56.040
56.333
56.628
56.923
57.221
57.520
57.821
58.124
58.428
58.735
59.044
59.355
59.669
59.985
60.304
60.626
60.951
61.279
61.611
61.946
62.286
62.629
62.977
63.329
63.687
64.050
64.419
64.794
65.176
65.566
65.963
66.369
66.785
67 211
67 649
68 100
68 566
69 048
69 549
70 071
70 619
71 197

0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00
1.01
1.02
1.03
1.04
1.06
1.07
1.08
110
111
112
114
115
117
118
1.20
1.22
1.24
1.26
1.28
1.30
1.32
1.34
1.36
1.39
1.42
1.44
1.47
1.50
1.54
1.57
1.61
1.65
1.69
1 74
1 78
1 84
1 90
1 96
2 03
211
2 20
2 30
2.41
2.54
2.70
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22.155
23.086
24.027
24.978
25.937
26.906
27.886
28.875
29.875
30.886
31.907
32.940
33.985
35.042
36.111
37.194
38.289
39.398
40.521
41.659
42.812
43.980
45.165
46.367
47 586
48 823
50 080
51 356
52 653
53 971
55 312
56 677
58 066
59 482
60 925
62.398
63.901
65.437
67.007
68.615
70 262
71 952
73 687
75 472
77 310
79 207
81 167
83 199
85 309
87.507
89.805
92.218
94.762
97.462
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26700.000
26800.000
26900.000
27000.000
27100.000
27200.000
27300.000
27358.544

171.811
172,471
173.189
1 73,987
174.902
176,015
177.582
180,000

2.89
3.12
3.42
3.82
4.41
5.39
7.64

11.85

200.351
203.471
206.890
210.712
215,120
220,510
228,152
240.000
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Appendix A.4

Program ECLIPSE

Listing and Sample Output

178



PROGRAM ECUPSE

C

C

C
C

C

C

C
C

C

C

C

C
C

C
C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C
C

C

AUTHOR: Gary E. Yale

DATE: Nov 90

OBJECTIVE:
Find the worst case eclipse for an elliptical orbit.

ASSUMPTIONS:
Molniya type orbit.
Critical Inclination (63.43 deg).
Longitude of Ascending Node is unknown,
Argument of Perigee = 270 deg (maximum Northern Hemisphere coverage).
Earth's shadow is a cylinder with radius equal to radius of Earth.

SUPPORT MODULES: None.

INPUTS:

Altp:
Period:

Perigee altitude (km)
Orbit period (hrs)

OUTPUTS:

Eclpdur:
NuEnter:
NuExit:

Eclipse duration (min)
Value for Nu at eclipse entry (rad)
Value for Nu at eclipse exit (rad)

LOCAL VARIABLES:

Re: Radius of the Earth (km)
Mu: Gravitational Parameter for the Earth (km^3/sec^2)
DEG2RAD: Conversion factor from degrees to radians (rad/deg)
Semi: Semimajor axis (kin)
Ecc: Eccentricity
Test: Value to determine if iteration has converged (km)
NuLow: Low end marker when converging on a value for Nu (rad)

C NuHigh: High end marker when converging on a value for Nu (rad)
C NuTest: Test value for Nu (rad)
C NuCenter: Value for Nu at the center of the earth's shadow (rad)
C RTest: Radius evaluated at NuTest (km)
C RPerp: Portion of RTest perpendicular to sun line (km)
C EAnomB: Eccentric anomaly at eclipse entry (rad)
C EAnomF: Eccentric anomaly at eclipse exit (rad)
C

REAL*8 Re, Mu
REAL*8 Period, Altp
REAL*8 Eclpdur
REAL*8 Semi, Ecc, Test
REAL*8 Nulow, Nuhigh, Nutest, NuCenter, NuEnter, NuExit
REAL*8 RTest, RPerp, EAnomB, EAnomF
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CHARACTER'1 Again

OPEN (Unit = 8, File = 'Eclipse.Out', Status = 'New')

C
C Initialize useful constants.
C

Re = 6378.135d0
Mu = 398600.8d0
DEG2RAD = PI/180.0D0

C
C Get the orbital period and perigee altitude.
C Echo check them to the output file.
C

10 Write(*,*)'Enter the orbital period in hours'
Read(*,*)Period
Write(*,*)'Enter the perigee altitude in kilometers'
Read(*,*)Altp
Write(*,900)
Write(* ,910)Period
Write(*,920)Altp
Write(8,900)
Write(8,910)Period
Write(8,920)Altp

C
C Calculate semimajor axis and eccentricity
C

Semi = ((((3600.0d0*Period)/(2.0d0*Pi))**2)*Mu)**(l.0d0/3.0d0)
Ecc = (Semi- (Re + Altp))/Semi

C
C
C
C
C
C
C
C
C
C
C

Worst case eclipse occurs when the vector from the center of the
earth toward the sun lies in the same plane as the orbit plane.
Under these circumstances, the S/C must pass through the center
of the Earth's shadow. The situation gets worse when the point
of the orbit that passes through the center of the shadow
approaches apogee. Consequently, the geometry of the Earth's
lilt with respect to the plane of the ecliptic coupled with the
restriction that argument of perigee be at 270 deg lead to the
longest duration eclipse occurring when the point 113.5 deg from
perigee (90 + 23.5 for the tilt of the Earth's spin axis) passes
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C through the center of the shadow.
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

Iterative solution for true anomaly at eclipse entry.

Because the center of the eclipse is for Nu = 113.5 deg, eclipse
entry must occur for some value of Nu such that

23.5 deg < NuEnter < 113.5 deg
Markers are used to hold low and high values for Nu. NuTest is
half way between the low and high values. The radius is calculated
for this value of NuTest. The solution has converged if the
portion of the radius vector perpendicular to the sunline is
within one kilometer of the radius of the earth. If the solution

has not converged yet, the program selects which marker to update.
If the portion of the radius vector perpendicular to the sunline is
greater than the radius of the earth, the S/C is not in eclipse and
the marker to update is the low value for Nu. The marker for the
high value of Nu is updated if the portion of the radius vector
perpendicular to the sunline if is less than the radius of the
earth. Finally, the eccentric anomaly at eclipse entry is
calculated.

100

NuCenter = 113.5d0 * DEG2RAD
NuEnter = NuCenter - Pi/2.0d0
NuLow = NuEnter
NuHigh = NuCenter
NuTest = (NuHigh + NuLow) / 2.0d0
RTest = Semi * ( 1.0d0 - Ecc**2) / (l.0d0 + Ecc * DCOS(NuTest))
RPerp = RTest * DSIN(NuCenter - NuTesl)
Test = RPerp - Re
IF (DABS(Test) .GT. 1.0d0) THEN

IF (Test .GT. 0.0) THEN
NuLow-- NuTest

ELSE

NuHigh = NuTest
ENDIF
GOTO 100

ELSE
NuEnter = NuTest

ENDIF

EAnomB = DACOS((Ecc + DCOS(NuEnter))/(1.0d0 + Ecc*DCOS(NuEnter)))

C
C
C
C
C
C

Iterative solution for true anomaly at eclipse exit.

Because the center of the eclipse is for Nu = 113.5 (:leg, eclipse
exit must occur for some value of Nu such that

113.5 deg < NuExit < 203.5 (:leg
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C Remaining logic parallels that for eclipse entry case.
C

200

NuExit = NuCenter + Pi/2.0d0
NuLow = NuCenter
NuHigh = NuExit
NuTest = (NuHigh + NuLow) / 2.0d0
RTest = Semi ° ( 1.0d0 - Ecc**2) / (l.0d0 + Ecc * DCOS(NuTest))
RPerp = RTest * DSIN(NuTest - NuCenter)
Test = RPerp- Re
IF (DABS(Test) .GT. 1.0d0) THEN

IF (Test .GT. 0.0) THEN
NuHigh = NuTest

ELSE
NuLow = NuTest

ENDIF
GOTO 2OO

ELSE
NuExit = NuTest

ENDIF
EAnomF = DACOS((Ecc + DCOS(NuExiI))/(I.0d0 + Ecc*DCOS(NuExit)))

C
C
C
C
C
C
C

Eclipse duration is based on the difference between the eccentric
anomalies of eclipse entry and exit. Eclpdur holds temporary
values for the eclipse duration because the equation is lengthy.
The last line contains the true value for eclipse duration
expressed in minutes.

Eclpdur = EAnomB - Ecc * DSIN(EAnomB)
Eclpdur = EAnomF - Ecc * DSIN(EAnomF) - Eclpdur
Eclpdur = DSQRT(Semi**3/Mu) * Eclpdur / 60.0d0

C
C Write eclipse duration to output file.
C Write true anomaly at eclipse entry and exit to output file,
C

Write (*,1001) Eclpdur
Write (*,1002) NuEnter/DEG2RAD
Write (*,1003) NuExit/DEG2RAD
Write (8,1001) Eclpdur
Write (8,1002) NuEnter/DEG2RAD
Write (8,1003) NuExit/DEG2RAD

C
C See if there is another case.
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C

Write(*,*)'Do you have another case?'
Write(*,*)' Enter "y" or "n"
Read(*,*)Again
IF ((AGAIN .EQ. "Y") .OR. (AGAIN .EQ. "y")) THEN

GOTO 10
ENDIF

900 FORMAT (///)
910 FORMAT (lX,'Orbital period (hrs) =',F6.3)
920 FORMAT (lX,'Perigee altitude (kin) =',F8.3)

1001 FORMAT (lX,'Eclipse duration (rain) =',F8.3)
1002 FORMAT (lX,'True Anomaly at eclipse entry (deg) =',F7.3)
1003 FORMAT (lX,'True Anomaly at eclipse exit (deg) =',F8.3)

END

Orbital period (hrs) =
Perigee altitude (km) =

Eclipse duration (min) =
True Anomaly at eclipse entry (deg) =

True Anomaly at eclipse exit (deg) =

8.000
500.000

52.079
70.587

131.715
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APPENDIX B

A. BATTERY DESIGN

The batteries were sized on the eclipse load of the AVHRR payload. Having the

requirement to operate the AVHRR 24 hours a day, it is not possible to turn off the mission

instrument during eclipse to reduce power consumption. Therefore, the battery must

supply all the power necessary to run the AVHRR and the bus during the 37 minute

eclipse. The solar array must replace this 100.6 W in the approximately one hour of

sunlight the AVHRR experiences. The equation used is:

Pin - (Pdischarged)(tdischarged) (B. 1)

(lq)(12)(trecharge)

where

Pin = Power required for recharge

rl = efficiency of charging equipment

I.t = 10 % margin for Low Earth Orbit

For the AVHRR:

(100.6)(37/60) = 76.5 W (B.2)
Pin= (0.9)(0.9)(1)

To calculate the charging rate the amp-hours utilized must first be determined. For

the AVHRR, a discharge of 100.6 W at 17.6 V minimum consumes 3.52 amp-hours. The

charging current required is then determined by dividing the amp-hours consumed by the

amount of time the sun is available for charging. It was assumed that 90% of the sunlit

portion of the orbit was used for recharging. For the AVHRR the charging current is 3.52

amps. The charging rate is then computed by dividing the cell capacity of the battery by the
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chargingcurrent. Theresultantchargerateis C / 3.4 where C is the battery capacity in

amp-hours. This charge rate is only slightly lower than the maximum recommended rate of

C/3.

For the EHF payload the above procedures resulted in the following calculations:

Pin = (150.3)(52/60) _ 24.7 W
(0.9)(0.9)(6.5) (B.3)

The amp-hours used are:

(150.3 W)(52/60)
(17.6 V) = 7.4 Amp-hour (B.4)

The charge current is:

7.4 Amp-hour
6.5 hours - 1.1 Amps (B.5)

C
The charge rate is: ]-]-
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B. SOLAR ARRAY DEGRADATION

The solar cell radiation degradation was performed using the JPL Solar Cell

Radiation Handbook. Analysis was done for both the circular low earth orbit and the 8-

hour Molniya orbit. For the circular orbit, the first step was to determine the 1 MeV

equivalent fluences for trapped protons and electrons at a 450 nm orbit. With the

equivalent 1 Mev fluence, the electric power circuit parameters can be tbe obtained from

graphs in the radiation handbook. This data is shown in Tables B.6 TO B.9. For the 8-

hour Molniya orbit, the satellite is traveling through several different altitudes at a changing

speed. In order to determine the equivalent 1 MeV fluence, a summation must be

performed in time increments over one orbit. The summation is shown in Equation B.6.

where:

= _ O(h) At (B.6)

fir = total fluence in one orbit

0(h) = fluence interpolated for the average altitude h

At = time increment (5 minutes)

The 8-hour orbit was broken up into 5 minute increments. At each of these time

increments, the equivalent fluence was determined for the average altitude during that time

increment. This represents the fluence that the satellite sees during that 5 minutes. The

fluence is multiplied by 5 minutes and then the product for each increment is summed to

determine the equivalent fluence for the orbit. Then it is a simple matter to determine the

equivalent fluence for 1 year and 3 years in order to enter the graphs and obtain circuit

parameters. The numbers are shown in Tables B.I TO B.5.

1. EHF Payload

Solar Cell: 10 Ohm-cm resistivity

0.0203 cm (.008 in) thick
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Dual AR, BSR, BSF, TEX

Coverglass: 0.015 cm (.006 in) thick

Fused silica, UV filter

Anti-reflecting coating

Backshielding: Inf'mite

Orbit: 8 hour Molniya (63.4 degree inclination)

Apogee = 2758 km

Perigee = 500 km

Eccentricity = .6612992

Assumptions: Solar maximum

3 year life
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Time

(rain)
AIt (km) Air

(nm)
Electrons

(all)
2.5'7E + 11

Protons

(Voc,Pm)

Protons

(lsc)
0 500 273.40 2.98E + 12 1.76E +12

5 725 396.43 4.27E + II 1.46E + 13 8.31E + 12

10 1415 773.73 1.96E + 12 1.79E + 13 1.05E + 14

1287.73 9.42E + 12 2.11E + 15 1.15E + 15

1.61E + 13
15

20 1.15E + 16

2355

34489 5.68E + 151885.39

25 4605 2518.04 1.80E + 13 2.81E + 16 1.27E + 16

30 5775 3157.81 1.62E + 13 3.57E + 16 1.52E + 16

35 6948 3799.21 1.51E + 13 3.27E + 16 1.33E + 16

4423.67 1.62E + 13 2.61E + 16 1.03E + 164O

45

50

55

6O

65

7O

75

8O

85

9O

95

100

105

110

115

120
125

130

135

140

145

150

155

160

8090

9151

10215

11210

12190

13145

14025

14875

15690

16485

12745

17948
18648

19285

19915

20505

21065

21610

22110

22590

23060

23495

23895

24278

24648

24975

25295

25575

25849

26080

26310

26695

26847

26995
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5003.83

5585.63

6129.70

6665.57

7187.77

7668.96

8133.75

8579.40

9014.11

9429.68

9814.09

10196.85

10545.17

10889.65

11212.27

11518.48

11816.49

12089.9

12352.36

12609.36

12847.22

13065.94

13275.37

13477.69

13656.50

13831.47

13984.58

14134.41

14260.72

14386.48

14597.00

14680.12

14761.05

170

175

1.82E + 13

2.17E ÷ 13

2.60E + 13

3.I6E + 13

3.63E + 13

3.94E + 13

4.28E + 13

4.66E + 13

5.04E + 13

5.26E + 13

5.49E + 13

5.51E + 13

5.40E + 13

5.29E + 13

5.11E + 13

4.89E + 13

4.68E + 13

4.51E + 13

4.38E + 13

4.26E + 13

4.14E + 13

4.01E + 13

3.81E + 13

3.62E + 13

3.45E + 13

3.28E + 13

3.13E + 13

2.98E + 13

2.86E + 13

2.73E + 13

2.52E + 13

2.43E + 13

2.35E + 13

180

185

1.84E + 16

1.26E + 16

7.57E + 15

4.40E + 15

2.06E + 15

1.14E + 15

4.48E + 14

2.47E + 14

5.73E + 13

3,52E + 13

1.48E + 13

4.04E + 12

2.38E + 12

7.4.4E + 11

1.73E + 11

1.05E + 11

4.02E + 10

8.76E - 03

6.24E - 03

3.76E - 03

1.47E - 03

3.80E + 00

2.59E + 00

2.13E + O0

1.40E + O0

6.86E - O1
6.28E - 02

O.OOE + O0

O.OOE + O0

0.00E + O0

O.OOE + O0

O.OOE + O0

O.OOE + O0

190

200

205

210

7.08E + 15

4.79E + 15

2.83E + 15

1.63E + 15

7.51E + 14

4.14E + 14

1.60E + 14

8.84E + 13

2.01E + 13

1.24E + 13

5.18E + 12

1.39E + 12

8.18E + II

2.55E + II

5.87E + 10

3.59E + 10

1.37E + 10

8.76E -03

6.42E -03

3.76E - 03

1.47E - 03

3.80E+00

2.95E +00

2.13E +00

1.40E +O0

6.86E - 01

6.82E - 02

O.00E + O0

O.0OE + 00

O.OOE + O0

O.OOE + O0

0.00E + O0

O.0OE + O0

215 27098 14817.37 2.29E + 13 O.OOE + O0 O.OOE + 00

220 27197 14871.50 2.24E ÷ 13 0.00E + O0 O.OOE + O0

225 27260 14905.95 2.20E + 13 O.00E + O0 O.OOE + O0

230 27340 14949.69 2.16E + 13 O.OOE + O0 O.OOE + O0

235 27354 14957.35 2.15E + 13 O.OOE + O0 0.OOE + O0

240 27358 14959.54 2.15E + 13 O.00E + 00 0.00E + O0

3.48E+ 122.90E+ 10 1.45E+ 12

3.18E+13 3.82E+15 1.59E+15

9.54E+13 1.15E+16 4.76E+15

(per orbiQ
(per year)

• (life)

TOTALS

TOTALS

TOTALS

TABLE B. 1 Fluence Calculation for 8-hour Molniya Orbit
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1 Me V Electron Fluence (per year)

Particle Type

Trapped Electrons

Trapped Protons

TOTAL FLUENCE

FOR 3 YEARS

I$¢ V oc,Pmax

3.18E+13 3.18E+13

3.82E+15 1.59E+15

3.85E+15 1.62E+15

1.15E+16 4.86E+15

TABLE B.2 Total 1 Mev Fluence for 8-hour Molniya Orbit

Solar Cell Output for El-IF

a. BOL

Eq Fluence = 0

Absolute

Woc

Relative

lsc 44 1
584 1

Pmax 19.8

492

40.24 1
Wrap

Imt_

TABLE B.3 BOL Solar Cell Parameters

b. After l Year

Eq Fluence: Is,: = 3.85E+15

Voc,Pm = 1.62E+15

Isc

Woc

Absoluie

32.4

502

13.1Pmsx

Vmp 410 0.834
Imp 31.9 0.792

Relative

0.736

0.860

0.663

TABLE B.4 One Year Solar Cell Parameters
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C. After 3 Years

Eq Fluence: Isc = 1.15E+16

Voc,Pm = 4.86E+15

I5C

Vo¢

PIIi_

Vmp
Imp

Absolute

29.5

483

11.3

391

28.9

Relative

0.670

0.827

0.571

0.795

0.72

TABLE B.5 EOL Solar Cell Parameters

. AVHRR Payload

Solar Cell: 10 Ohm-cm resistivity

0.0203 cm (.008 in) thick

Dual AR, BSR, BSF, TEX

Coverglass:

Backshielding:

Orbit:

0.015 cm (.006 in) thick

Fused silica, UV filter

Antireflecting coating

Infinite

450 NM Circular (Assumed 90 ° inclination)

Assumptions Solar Maximum

3 Year Life

Particle Type

Trapped Electrons

Trapped Protons

TOTAL FLUENCE e/cm2-_-

Is(: Voc,Pm,x

4.59E+11 4.59E+11

8.64E+ 12 1.47E+ 13

9.10E+12 1.52E+ 13

TABLE B.6 1 MeV Fluences for 450 NM Orbit
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SolarCellOutputfor AVHRR
a. BOL

_I FIuence = 0

Absolute Relative

Isc 44 1
V¢_ 584 1

Fm_ 19.8 1

mp 492 1

Imp . . 40.24 1

TABLE B.7 BOL Solar Cell Parameters

b. After 1 Year

Eq Fluence Isc = 9.1E+12

Voc,Pm = 1.52E+13

Isc

Woc

max

Vmp

Imp

Absolute

43.7

571
19

474

39.8

Relative

0.993

0.978
0.959

0.963
0.989

TABLE B.8 One Year Solar Cell Parameters

C° After 3 Years

Eq Fluence Isc = 2.73E+13

Voc,Pm = 4.55E+ 13

Absolute

Isc 42.7
556Voc

Pmax

Wrap

Imp

18

461

39

Relative

0.97

0.952

0-.909

0.937

0.969

TABLE B.9 EOL Solar Cell Parameters
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C. SOLAR ARRAY PANEL SIZING

Cells in Series

Imp

(Xl

i
K a

i
K d

Ks

Ii

Power

AVHRR

0.624

0.00024

0.96

0.969

0.8885

0.517334

11.25

315

EHF

0.624

0.00024

0.96

0.72

0.8885

0.384397

8.5

238

Bus voltaire 28 28

T 33 33

It
Np = ]- 21.74609 22.11256

Cells in Parallel

0.492 0.492Vmp

AV 0.005 0.005

Ctv -0.0022 -0.0022

T 33 33

v 0.937 0.795
K e

V 0.439828 0.373173

28 28

1.8 1.8

67.75379

Bus voltage

Bus voltage drop
bus + busdrop

Ns = V 79.85572

Total # Cells 1473.38 1765.814

Cell width cm 2.5 2.5

6.2

2.403101

Cell height cm

Ce//area sq in

Area needed sq ft 24.58806

6.2

2.403101

29.46826

TABLE B.10 Summary of Solar Array Sizing

192



APPENDIX C

ATTITUDE CONTROL CALCULATIONS

1. Moment of Inertia Calculations

The spacecraft is modeled as a simple assembly of individual components. Each

component is represented as a simple geometric solid. Worst case is beginning of life with

solar arrays deployed. The cross-products of inertia have been determined to contribute

less than 0.5 kg-m 2 and are not shown here. The coordinate system is taken as the

geometric center of the main body with the positive Z direction out of the earth face,

positive X direction out of the west face and the positive Y direction out of the south face.

The center of mass is measured from this reference.

Payload mass

kg

157.01

X

O'n

Y

cm

z

LTn

Xxx

k$-m 2

14.16

Iyy

k_-m 2

45.4

k_-m 2

39.75AVHRR 1.68 4.47 13.23

EHF 175.51 -3.02 1.83 15.39 15.38 91.90 83.06

TABLE C. 1 Mass and Inertia Summary

The component break-down and contribution to the total inertia is given in the

following:
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Item

RTU
RCU

ESA
EarthFace
Yaw RWA
AntiEanh Face

'Tank

East SADM

Roll RWA

Gyros
ADACS

East Face
West SADM

8

8

3.64
0.375

4.5

0.375

8

3.15

4.63

4.49

14.25
0.375

3.15

8

6
13.5

28

0

28

0

4

4.7

2.95

2.5
23

4

8

6

0

32

4.7

32

0
0

0

0

5.87

28

0

mass x

Obs)
5 11.5

5 -12.5

9 0

0.786 0

5.23 -10.5

0.786 0

8.16 0

8.8 -14

5.23 -13.15
2.64 -14

5.5 -14.25

0.565 - 15.5

8.8 14

Y

-9.5

-9.5

-8

0

8.5

0

0

0
-1.58

- 11.25

6.38

0

0

Batteries
Power
Elecu'onics

West Face

BU RWA

SSE

SSU
North Face

Pitch RWA

CSA

South Face

West Arra_,

East Arra_,

Propellant
AVHRR

11.81

15.75

0.375

4.63

4.2
5.2

0.375

4.63

3

0.375

0.'685

0.685

11.5

9.06

5.9

23

4.7

4
5.5

23

4.7

8.16

23

64

64

0

31.5

10.23

5.9

28

1.6

32

0

32

34

34

0

14.5

15.7

13.22

0.565

5.23

1.1
0.98

0.646

5.23

0.646

11.72

11.72
22

62.4

11

12.5

15.5

10.18

-2.3
-2.3

0

0

62

-62

0
-0.25

7.5

6

0

-7.83

-12.5
-15.13

-13.5

11.15

9.89

13.5

0.38

0.38

0
8.25

z

8.5

8.5

10.75
11.5

-9.i5
-11.5

-3.5
2

-6.76

2.88

8.57

0
2

-6.38

8.5

0

-5.18
-2.16

-2.16

0

0

2.1

0

2

2

-3.5
18.75

TABLE C.2 AVHRR Component Breakdown
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ftem a b mass X

(Ibs)

RTU 8 '8 8 5 11.5

RCU 8 6 6 5 -12.5

ESA 3.64 13.5 0 9 0

Earth Face 0.375 28 32 0.786 0

Yaw RWA 4.5 0 4.7 5.23 - 10.5

AntiEarth Face 0.375 28 32 0.786 0
Tank 8 0 0 8.16 0

iEast SADM 3.15 4 0 8.8 -14

Roll RWA 4.63 4.7 0 5.23 -13.15

Y

-9.5
-9.5

-8

0

8.5

0

0

0

-1.58
- 11.25

6.38

0

0

7.5
6

G]n'os 4.49 2.95 0 2.64 -14
ADACS 14.25 2.5 5.87 5.5 -14.25

East Face 0.375 23 28 0.565 -15.5

West SADM 3.15 4 0 8.8 .... 14

Batteries 11.81 9.06 10.23 15.7 11

Power 15.75 5.9 5.9 13.22 12.5
Electronics

West Face 0.375 23

BU RWA 4.63 4.7
SSE 4.2 4

SSU 5.2 5.5

North Face 0.375 23

Pitch RWA 4.63 4.7

CSA 3 8.16

Z

0

8.5

10.75

11.5

-9.15

-11.5

-3.5

2

-6.76
2.88

8.57

0

2

-6.38
8.5

28 0.565 15.5 0 0

0 5.23 10.18 -7.83 -5.18

2 1.1 -2.3 -12.5 -2.16

1.6 0.98 -2.3 -15.13 -2.16

32 0.646 0 - 13.5 0
0 5.23 -10.5 11.'i5 0

7 9.68 9.89 2.1

South Face 0.375 23 32 0.646 0
64 34 11.72 62

64
0

18.78

WestArra ,
East Array
Propellant
Feed Horn

Supports
Reflector

0.685

0.685
8

& 10

34
0

13.68

0

11.72

22

10.73

5.4

-62

0

-9.91

13.34

13.5
0.38

0.38

0

0

0
Pedestal*

EHF Electronics

Box East

Box West
i

Box North
Box South

& 0 0

6

28
28

32

32

69.4

0.032

0.032
0.032

0.032

-12.63

-15.63

15.63
0

0

-2.5

0

0

-13.63
13.63

20

0.375

0.375

0.375
0.375

6

6

6

0
2

2

-3.5

21.5

31.36

14.13

14.31

14.31

14.31
14.31

* Reflector and Pedestal considered as a point mass.

TABLE C.3 EHF Component Breakdown
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2. Disturbance Torques

The disturbance torques consists of the solar pressure torque, the torque due to

aerodynamic drag, the gravity gradient torque, internal torques, and the torques provided

by the magnetic torque rods. The attitude control system senses these torques as a change

in attitude and body rates from the sensors and gyros. The compensating torques are then

provided by the RWA's. Cyclic torques will result in no net increase in wheel speeds,

however the secular torques will. These secular torques will result in unacceptably high

wheel speeds unless a desaturation scheme is used.

a,.&93g_T_9.m 

In order to determine the effect of the solar torque over the orbit period, some

simplifying assumptions are first made. The orbit is assumed to be exactly polar with a

3:30 PM ascending node. The 8:30 AM descending node case will be symmetric and is not

modeled here. The spacecraft axis are frozen at the equatorial crossing and then considered

'inertial', (in fact, it is rotating at 1 deg per day). The vector from the sun to this axis is:

S = sin(8) Io + cos(37.5) Jo + sin(37.5) Ko

The antinormal vector to the solar arrays is (in body coordinates):

n = cos(38.766 cos2(0t-25°))J + sin(38.766 cos(0t-25°))K

The solar radiation pressure moment, Ms, is (see ref AGR):
1

Ms = PA (n.S) r × ((1-ps)S + 2(ps+3-Pa)n)

The solar vector is then transformed into the body coordinates resulting in the solar

pressure moment (in body coordinates):

y(BD+Csin(38.766 cos(ot-25))-z (BH + CF) I

Ms = ( PA (I-IF + sin(38.766 cos(a-25)) D) z(BE )- x(BD+Csin(38.766cos(a-25))) J

x(BH + CF)- y(BE) K
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where:

B = (I - Ps)
1

C = 2(p,+ 3-pal)

D = -sin(or)sin(8)+ cos(oc)sin(37.5)

E = cos(_) sin(8)+ sin(c0sin(37.5)

F = cos(38.766 cos2(ot))

G = sin(37.5)

H = cos(37.5)

ot = orbit angle measured from equatorial crossing

8 = declination of the sun

Ps = coefficient of specular reflection

Pd = coefficient of diffuse reflection

GEOMETRY FOR 3:30 PM ASCENDING NODE OR3:T

Yo

Xo

Figure C.1 Coordinate System
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The solarpressureinducedtorqueis plottedbelow for oneorbit. Start time for the plot

is at the ascending node.
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b. Magnetic Tomue

The magnetic torque rods provide a torque about the pitch and roll axis. Due to the

roll-yaw coupling, this will be sufficient to desaturate all three RWA's. For this

simulation, the earth's magnetic field is modeled as constant over the poles (within ± 30

degree), at 60 micro-Tesla and constant over the geomagnetic equator, (within ± 30 degree)

at 30 micro-Tesla. The torque rods provide a 10 AMP-m 2 dipole. This results in a torque

about the pitch axis of 0.006 N-m and 0.003 N-m about the roll. Since this is the worst

case disturbance torque, the RWA gain and time constants are determined using these

values. The closed loop transfer function for the wheel is derived in ref AgrawM and is

provided below:

0(s) 1

lyy ( s +

Imposing a constant torque results in the time domain equation for the error:

0(t) M_.9_o[x2_exp (_t) (1_3 t) ]
= lyy _

This equation is solved analytically for tau for a 0.01 degree error. The gain is then

calculated by the formula:

K0 = I_

The results for each axis is provided in the attitude control section of the report.
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c. Aerodynamic Torque

The aerodynamic drag of the spacecraft results in a torque that is essentially about

the positive pitch axis due to the displaced center of mass. The center of pressure for the

spacecraft is again assumed to be the volumetric center of the main body. The atmospheric

density is assumed to be constant at the value during solar maximum. The results are

presented below:

Pressure Area Force Moment

1.5E-08 N-m 2 0.415 m 2 6 E-09 N 8 E-10 N-m

TABLE C.4 Summary of Aerodynamic Torque

3. Equations of Motion

The equations of motion of a three-axis stabilized spacecraft have been derived by

several authors. The ones presented here have been derived in ref Agrawal. These

equations account for the gravity gradient torque in the right-hand side with the other

disturbance torques on the left. The equations are presented below:

d_
Mxdist = Ixx _Td20+ (4 ¢oo2 (Iyy-Izz) - 030 hy) 0 + (" hy- 030 (Ixx - Iyy + Izz))

dO dhx
+ hz-di- - too hz + dt

d20Mydist = Iyy _T + 3 ¢0o2 0 (Ixx-Izz) + 030 hx 0 " hz dO_- + tOo hz _1/+ hx

+d__ h
dt

, d2_ dO
Mutist = -zz dt 2 + (COo2 (Iyy-Ixx) - too hy) _ + (hy + too (Ixx + Izz - Iyy)) _-

dO dhz
- hx_-+ C0ohx + d--t--
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where:

¢, 0, V are the attitude errors

is the orbital rate

hx, hy, hz are the wheel momentum

Ixx, Iyy, Izz are the spacecraft moment of inertias

The satellite's attitude control system is then modeled using the equations above and

the disturbance torques previously described. The model is a PC-Matlab program given

below:

% initialize variables for run

w_o = 1.032e-3; % orbital rate for 450 nmi circular, rad/sec

%

% coefficients of specular and diffuse reflections

rhos = 0.2; rhod = 0.0;

b_rho = ( 1-rhos); c_rho = 2*(rhos+ 1/3*rhod);

%

% read in inertia and center of mass (convert to MKS)

% note: inertia must be in Ibm - ft^2

load a:Xavhrr.spt; itot = avhrr.*0.1M214;

load a:Mvhrr.cen; cen = avhrr.*0.0254;

% coefficients for solar torque calcs

%

g_s = sin(0.6545); % offset of 37.5 deg;

h_s = cos(0.6545);

%
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% inputdeclinationherein rads

%

s_del= sin(0.4102);% maxdeclination

p_s= 4.644e-6;% solarpressureat I AU in N/m^2

% inputsolararrayarea

a_s- 4352; % areaof solararraysfor AVHRR in sq.in.

a_s= a_s* 6.4516e-4;% convertto MKS

%

x_c= cen(1); y_c= cen(2); z_c= cen(3);

%

ix = itot(1); i_y = itot(2); i_z= itot(3);

%

i l = 4*w_o_2*(i_y-i z); i_2 = w_o*(i_x-i_y+i_z);

i3 = 3*W_OA2*(i_x-i Z); i_4 = W_OA2*(i y-i_x);

i5 = W_O*(i_x+i_z-i_y);

torq_x = 0; torq_y = 0;

%

% define global variables (underscores)

globalw_og sh ss delp_sa sx cycz ci xi yiz...

i 1 i 2 i 3 i 4i 5 b rhocrhok_phik_theta...

k_psi t_phi t_theta t_psi torq_x torq_y;

function xdot = eqnmot(t,x)

% functions for solar torque

%

d = cos(w_o*t).* g_s- sin(w_o*t) .* s_del;

e = cos(w_o*t) .* s_del + sin(w_o*t) .* g_s;
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f = cos(0.67659434.* cos(w_o*t) - 0.436332313);

g = sin(0.67659434.* cos(w_o*t) - 0.436332313);

r=p s*a_s.*(h_s.*f+g.*d);

aeroy= 8.e-1O;

%

% solarandaero torque calculation

%

msx = r .* (y_c .* (b_rho .* d + c_rho .* g) - z c .* ...

(b_rho * h_s + c_rho .* f));

msy = r .* (z_c .* (b_rho .* e) - x_c .* (b_rho .* d +...

c_rho .* g)) + aeroy;

msz = r .* (x_c .* (b_rho * h s + c_rho .* f) - y_c .*...

(b_rho .* e));

%

% dete fine if in eclipse and set Ms to zero

%

n = fix(w_o*t/(2*pi));

if ((w_o*t >(2.98+2*n*pi)) & (w_o*t < (4.76+2*n*pi))),

msx = O; msy = O; msz = O;

end

%

% check wheel speeds and desat if necessary

%

if x(7) > 10.47,

torq_x = 1;

end

if x(8) >10.47,
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torq_y = 1;

end

if x(7) < O.1,

torq_x = O;

end

if x(8) < O.1,

torq_y = O;

end

if torq_x == I,

if ((w_o*t >(5.76+2*n*pi)) & (wo*t <(0.52+2*n*pi))),

mmx = -0.0003;

elseif ((w_o*t >(2.6+2*n*pi)) & (w_o*t <(3.67+2*n*pi))),

mmx = -0.0003;

else

mmx = O;

end

else

minx = O;

end

if torq_y == 1,

if ((w_o*t >(1.O+2*n*pi)) & (w_o*t <(2.1+2*n*pi))),

mmy = -0.0006;

elseif ((w o*t >(4.2+2*n*pi)) & (w_o*t <(5.2+2*n*pi))),

mmy = -0.0006;

else

mmy = O;

end
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else

mmy = O;

end

%

% differential equation matrix

%

% x(l) = phi x(3) = theta x(5) = psi

% x(2) = d/dt (phi) x(4) = d/dr (theta) x(6) = d/dr (psi)

% x(7) = roll wheel speed

% x(8) = pitch wheel speed

% x(9) = yaw wheel speed

% [xdot] = d/dt (x)

%

% roll error

%

xdot(1) = x(2);

xdot(2) = (i x^(-1)) .* (((-i_l) + w o.* x(8)) .* x(1) + ...

(x(8) + i_2) .* x(6) - x(4) .* x(9) + w o .* x(9) - ...

k_phi.* (t_phi .* x(2) + x(1)) + msx+mmx);

%

%

%

pitch error

xdot(3) = x(4);

xdot(4) = (i_y^(-1)).* (((-i_3) .* x(3)) - w_o .* x(7).*

x(1) + x(9).* x(2)- w_o .* x(9) .* x(5)- x(7) ...

%

* x(6)- k_theta .*(t_theta .* x(4)+ x(3))+ msy+mmy);
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% yaw error

%

xdot(5) = x(6);

xdot(6) = (i_z^(-1)) .* (((-i_4) + w_o .* x(8)) .* x(5) - ...

(x(8) + i_5) .* x(2) + x(7) .* x(4) - w_o .* x(7)...

- k_psi .* (t_psi .* x(6) + x(5)) + msz);

%

%

%

%

wheel control

wheel inertias in kg-m^2

iwx = 0.009; iwy = 0.009; iwz = 0.009;

xdot(7) = k_phi .* (tphi .* x(2) + x(1 ))./iwx;

xdot(8) = k_theta .* (t_theta .* x(4) + x(3))./iwy;

xdot(9) = k_psi .* (t_psi .* x(6) + x(5))./iwz;

These equations are integrated using a Runge-Kutta-Fehlberg integration method

provided with Matlab. The results are plotted for one orbit on the following pages. The

simulation shows that the pitch wheel absorbs the angular momentum of the rotation of the

spacecraft about the pitch axis due to its orbital motion. The roll and yaw wheel should

only need desaturation if a change in the orbit is required.
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Pointing Error for AVHRR Payload
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Wheel Speed for AVHRR Payload
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APPENDIX D

THERMAL CONTROL CALCULATIONS

The thermal control appendix contains a partial ITAS output for the AVHRR

configured spacecraft. This partial output is in the form of steady state temperatures and is

provided to show a sampling of the 1TAS program's capability. The payload and the bus

were modeled by approximately 150 nodes and several runs were completed for various

orbits. Because the majority of the inputs into the ITAS model were assumed, the run

should be considered as a bulk analysis. Very specific and detailed heat data, down to the

circuit board level, would be required for more accurate temperatures. This data was

unobtainable in the short time this project was completed.
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Thermal Analysis Parameters

,

2.

3.

4.

5.

6.

7.

8.

9.

i0.

ii.

12.

13.

14.

15.

Solution Method:l. Steady-State 2.Transient ................ 1

Solution Time Step ........ (minutes) ...................... 0.i0

Final Time (minutes);if <0 then no of orbs ................ 123.80

Starting Temperature ...... (Kelvin) ...................... 300.00

Temperature Print Interval (minutes) ...................... 20

Heat-Flow Print Interval (Iterations) ................... 9999

Temperature Unit I:K, 2:C, 3:F, 4:R ....................... 2

Solution Accuracy Parameter ............................... 130

Solution Convergence Parameter ............................ 1.30
Solution Tolerance ........................................ 0.00010

Transient Solution Stability Factor ....................... 0.850

Include User-Defined Network ....... (Y/N) .................. Y

Print RADK, POWER .................. (Y/N) .................. N

Print Transient Time/Temperature...(Y/N) .................. N

Starting Temperatures Forced (No.4) (Y/N) .................. Y

I\I\1\1\1\1\1\1 \1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1
*ITAS THERMAL ANALYSIS*

\/\/\/\/\/\/\/\/\/\/\/\/\/\/\1\/\/\/\/\/\/\/\/\/\/\/\/\/\/

HEAT RATES FROM ORBITAL INCIDENT & IR AND UV MARICES

**********************************************************

Script-F Control Parameters

i. SPACE (SINK) Node Number ................................... 349

2. Cutoff Limit For Area*Script-F (Sq.cm.) .................... 0.1000E+01

3. Cutoff Limit For Blackbody Viewfactors ..................... 0.0000

4. SPACE (SINK) Node Emissivity ............................... 0.9999

5. SPACE (SINK) Node Temperature (Kelvin) ..................... 0.0000

6. SINDA Interface File To Be Generated (Y/N) ................. Y
7. SINDA Radiation Conductor Number At Start .................. I00000

8. Print control: 0:No,do not print, l:Yes, print all ......... 0
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Seq Surface No Node No Alpha Emiss T/Mass Dissip Matr ID

1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

20

21

"9

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

4O

41

42

43

44

45

46

47

1.01

1.02

1.03

1.04

1.05

2.01

2.02

2.03

2.04

2.05

2.06

3.01

3.02

3.03

3.04

3.05

3.06

4.01

4 02

4 03

4 04

4 05

4 06

5 01

5 02

5 O3

5 O4

5.05

5.06

5 O7

5 O8

5 09

5 i0

5 Ii

5 12

5 13

5 14

5.15

5.16

5.17

5.18

6.01

6.02

6.03

6.04

6.05

7.01

1 0.30

2 0.30

3 0.30

4 0.30

5 0.30

6 0.42

7 0.42

8 0.42

9 0.42

i0 0.42

ii 0.42

12 0.38

13 0.38

14 0.38

15 0.38

16 0.38

17 0.38

18 0.42

19 0.42

20 0.42

21 0.42

22 0.42

23 0.42

24 0.44

25 0.44

26 0.44

27 0.44

28 0.44

29 0.44

30 0.44

31 0.44

32 0.44

33 0.44

34 0.44

35 0.44

36 0.44

37 0.44

38 0.44

39 0.44

40 0.44

41 0.44

42 0.25

43 0.25

44 0.25

45 0.25

46 0.25

47 0.42

0.80

0.80

0.80

0.80

0.80

0.21

0.21

0.21

0.21

0.21

0.21

0.19

0.19

0.19

0.19

0.19

0.19

0.21

0.21

0.21

0.21

0.21

0.21

0.O5

0.05

0.05

0.05

0.05

0 O5

0 O5

0 05

0 O5

0 O5

0 05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.72

0.72

0.72

0.72

0.72

0.21

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1 00

1 00

1 00

1 00

1 00

1 00

1 00

1 00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.00

0.00

0.00

0.00

0.00

0.i0

0.i0

0.I0

0.i0

0.i0

0 i0

9 O0

9 O0

9 O0

9 O0

9 O0

9 O0

0.30

0.30

0.30

0.30

0.30

0.30

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

1.50

1.50

1.50

1.50

1.50

0.30
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153

153

153

153

153

118

118

118

118

118

118

210

210

210

210

210

210

118

118

118

118

118

118

34

34

34

34

34

34

34

34

34

34

34

34

34

34

34

34

34

34

173

173

173

173

173
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4"

_8

l

5O

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

J

76

77

78

79

8O

81

82

83

84

85

86

87

88

89

9O

91

92

93

94

95

96

97

98

99

7.02

7.03

7.04

7.05

7.06

8.01

8.02

8.03

8.04

8.05

8.06

9.00

i0.00

ii.00

12.00

13.00

14.01

14.02

14.03

14.04

14.05

14.06

14.07

14 08

14 09

14 I0

14 Ii

14 12

14 13

14 14

14 15

14 16

14.17

14.18

14.19

14.20

14.21

14.22

14.23

14.24

15.01

15.02

15.03

15.04

15.05

15.06

15.07

15.08

15.09

15. I0

15. ii

15.12

48

49

5O

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

7O

71

72

73

74

75

76

77

78

79

8O

81

82

83

84

85

86

87

88

89

9O

91

92

93

94

95

96

97

98

99

0.42

0.42

0.42

0.42

0.42

0.42

0.42

0.42

0.42

0.42

0.42

0.19

O.25

0.25

0.05

0.05

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68

0.68
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0.21

0.21

0.21

0.21

0.21

0.21

0.21

0.21

0.21

0.21

0.21

0.08

0.72

0.72

0.80

0.80

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

0.48

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00
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0.30

0.30
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0.50
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0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

O.5O

0.50
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173

36
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116
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116
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116
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In0 15.13 i00 0.68 0.48

15.14 i01 0.68 0.48

102 15.15 102 0.68 0.48

103 15.16 103 0.68 0.48

104 15.17 104 0.68 0.48

105 15.18 105 0.68 0.48

106 15.19 106 0.68 0.48

107 15.20 107 0.68 0.48

108 15.21 108 0.68 0.48

109 15.22 109 0.68 0.48

ii0 15.23 ii0 0.68 0.48

IIi 15.24 iii 0.68 0.48

112 16.01 112 0.68 0.48

113 16.02 113 0.68 0.48

114 16.03 114 0.68 0.48

115 16.04 115 0.68 0.48

116 16.05 116 0.68 0.48

117 16.06 117 0.68 0.48

118 16.07 118 0.68 0.48

119 16.08 119 0.68 0.48

120 16.09 120 0.68 0.48

121 16.10 121 0.68 0.48

122 16.11 122 0.68 0.48

123 16.12 123 0.68 0.48

124 16.13 124 0.68 0.48

125 16.14 125 0.68 0.48

_ 16.15 126 0.68 0.48

16.16 127 0.68 0.48

128 16.17 128 0.68 0.48

129 16.18 129 0.68 0.48

130 16.19 130 0.68 0.48

131 16.20 131 0.68 0.48

132 16.21 132 0.68 0.48

133 16.22 133 0.68 0.48

134 16.23 134 0.68 0.48

135 16.24 135 0.68 0.48

136 22.00 136 0.30 0.80

137 23.01 137 0.68 0.48

138 23.02 138 0.68 0.48

139 23.03 139 0.68 0.48

140 23.04 140 0.68 0.48

141 23.05 141 0.68 0.48

142 24.01 142 0.68 0.48

143 24.02 143 0.68 0.48

144 24.03 144 0.68 0.48

145 24.04 145 0.68 0.48

146 24.05 146 0.68 0.48

I\1\1\1\1\1\1\

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1 00

1 00

1 00

1 00

1 O0

1 00

1 00

1 00

1 O0

1 00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.50 116

0.00 153

0.70 116

0.70 116

0.70 116

0.70 116

0.70 116

0.70 116

0.70 116

0.70 116

0.70 116

0.70 116

I\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
*ITAS SCRIPT-F (RADK) COMPUTATIONS*

_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\
147 IS A FIXED TEMPERATURE NODE

*WARNING* ITAS HAS DIFFERENT NUMBER OF SURFACES THAN CONTROL CARD SPECIFIED
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Orbital Control Parameters

0. Print:0:Summary;l:Detail;2:Individual Tables;3:Options 1+2. 0

i. Power Units In The Output 0:Watt, l:Btu/hr, 2:Btu/min ...... 2

2. Orbit And Attitude Remain Constant Throughout Run (Y/N) .... Y

3. Spacecraft Is 0:Stationary, l:Spinning ..................... 0

4. Spacecraft Geometry Is:
O:Fixed, or l:Changing Throughout Orbit .................... 0

5. Shadow Entry/Exit Point Calculation Accuracy Factor ........ 5

6. Earth and Albedo Flux Computation Accuracy Factor-I ........ 6

7. Earth and Albedo Flux Computation Accuracy Factor-2 ........ I0

Spacecraft Attitude:

8. Spacecraft Is l:Earth-Oriented, 2:Sun-Oriented ............. 1

9. Spacecraft Is Orbiting Around l:Earth, or 2:Moon ........... 1

Select Option (A or B) For Beta Angle:

Option Selected ............................................ A

option A:

_0. Longitude of the Ascending Node (Degrees) ................. 52.50

_. Sun Declination (Degrees) ................................. 0.00

12. Sun Right Ascension (Degrees) ............................. 0.00

13. Orbit Inclination (Degrees) ............................... 98.75

14. Argument of Perifocus (Degrees) ........................... 0.00

Option B:

15. Beta Angle (Degrees), Orbit Normal & Sun Vector ........... 90.00
0.00

16. Cigma Angle (Degrees), ...................................

(Orbit XO & Sun vector Projection in Orbit Plane)

17. Angular Increment of the True Anomaly (Degrees) ........... 30.00

18. Starting Point in the Orbit (Degrees) ..................... 0.00

19. Rotation Angles (Degrees):
X-ROT ..................................................... 0.00

Y-ROT ..................................................... 0.00

Z-ROT ..................................................... 0.00

20. Radiation Constants:Solar, Albedo, Earth-IR:

SOLAR ..................................................... 429.50

ALBEDO .................................................... 0.30

EARTH-IR .................................................. 75.12

21. Orbit Altitude At Apogee(=O Circular Orb)NM (-ve for KM).. 0.00

22. Orbit Altitude At Perigee(Closest Point);NM (-ve for KM).. 450.00

23. Satellite Travelling l:North, 2:South At Perigee .......... 1

Earth-Effects (IR and Albedo) Computation options:

31. Altitude Above Which All Earth Inputs Are Ignored ........ 225.00

214



_. Albedo & Earth-IR Computation Options (A/B/C) ............. C
A: Detailed (Accurate) Computation, The Real Thing!
B: Approximation (Faster), No Blockage, For Parametric
C: Approximation (Fastest),No AIb/E-IR, For Parametric Studies ONLY

_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\___\_\_\_\_\_\_\
*ITAS ORBITAL INCIDENT FLUX COMPUTATIONS*

_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\___\_\_\_\_\_\_\_\
ITAS ORBIT CONTROL PARAMETERS:

NUMBER OF SURFACES= 146

ENERGY UNITS = 2 REF. ITAS ORBITAL SETUP MENU

SPIN = 0 =0 NO; =i YES

VARIABLE GEOMETRY = 0 =0 NO; =i YES

NUMBER OF SURFACES IDENTIFIED IN THE BLOCKAGE TABLES= 146

NOTE: SURFACE AREAS ARE IN CENTIMETERS

DP & TP CALCULATED FROM THE ST CARD: 80.170

ITAS ORBITAL PARAMETERS INITIAL CONDITIONS:

-8.500

S/C ORIENTATION MODE= 1 =i EARTH; =2 STAR; =3 SUN

ALBEDO, EARTH-SHINE, SOLAR CONSTANT= 0.30 75.12 429.50

o Angle from the ascending node to perigee,

measured in the orbit plane at the center

of the earth = 0.00000E+00 Degrees

o Longitude of the ascending node in X, Y, Z,

angle past equinox, measured in the

equatorial = 5.25014E+01 Degrees

o Sun position In Celestial Coordinates :

COS (AS) = l. O0000E+O0-->Equinox

COS (BS) =-2.60943E-05

COS (GS) =-l.13442E-05-->North

AS = 1.63027E-03 Degrees

BS = 9.00015E+01 Degrees

GS = 9.00006E+01 Degrees

o Mean anomaly of the sun central angle from

perihelion = 7.60605E+01 Degrees

o Approximation to Kepler s solution for the

sun central =-1.63024E-03 Degrees; Measured

In The Ecliptic Plane From Line Of Nodes

o Sun RA

o Sun DEC
= 0.00000E+00 Degrees

= 0.O0000E+O0 Degrees
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Sun Vector
COS (alfa)

o COS (gama)

o COS (BETA)

Direction Cosines

= 6.08743E-01

= 1.20690E-01

= 7.84134E-01

In Orbit Plane:

o (alfa)

o (gama)

o * (BETA)

= 5.25014E+01 Degrees

= 8.30681E+01 Degrees

= 3.83593E+01 Degrees <--- *Note

o BETA *

o CIGMA *
= 3.83593E+01 Degrees <--- *Note

= 1.12141E+01 Degrees

* Note: BETA: The Angle Between The Sun Vector

And The Orbit Normal, And

CIGMA: The Angle Between The Projection Of
The Sun Vector In The Orbit Plane

From Perigee (=0 for Circular Orb)

ECC INC (DEG) LATP (DEG) LONG (DEG)
0.0000 98.750 0.000 0.000

DP (DAY) TP (HRS) DT(MIN) DETA (DEG) ROT1 (DEG)
80.170 -8.500 0.000 30.00 0.00

RP(NM)

450.0OO

ROT2 (DEG)
0.00 0.00

ROT 3 (D EG )

SURF NODE BTAB AREA ABSORB EMIT ALPHA BETA GAMMA COMMENT

1 1 1 6.22 1.0 1.0 1.0 0.0

2 2 4 4.47 1.0 1.0 0.0 1.0

3 3 3 5.11 1.0 1.0 0.0 0.0

4 4 2 6.22 1.0 1.0 -I.0 0.0

5 5 5 4.47 1.0 1.0 0.0 -i.0

6 6 20 0.63 1.0 1.0 1.0 0.0

7 7 21 0.63 1.0 1.0 0.0 1.0

8 8 43 0.25 1.0 1.0 0.0 0.0

9 9 22 0.63 1.0 1.0 -i.0 0.0

i0 i0 23 0.63 1.0 1.0 0.0 -i.0

ii ii 44 0.25 1.0 1.0 0.0 0.0

12 12 17 0.72 1.0 1.0 1.0 0.0

13 13 15 0.94 1.0 1.0 0.0 1.0

14 14 26 0.58 1.0 1.0 0.0 0.0

15 15 18 0.72 1.0 1.0 -I.0 0.0

16 16 16 0.94 1.0 1.0 0.0 -i.0

17 17 27 0.58 1.0 1.0 0.0 0.0

18 18 51 0.25 1.0 1.0 1.0 0.0

19 19 24 0.59 1.0 1.0 0.0 1.0

20 20 65 0.I0 1.0 1.0 0.0 0.0

21 21 52 0.25 1.0 1.0 -i.0 0.0

22 22 25 0.59 1.0 1.0 0.0 -i.0

23 23 66 0.I0 1.0 1.0 0.0 0.0

24 24 59 0.17 1.0 1.0 0.8 0.3

25 25 64 0.17 1.0 1.0 0.8 0.6

26 26 62 0.17 1.0 1.0 0.8 0.3
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1.0

0.7

0.3

-0.3

-0.7

-i.0

-i.0

-0.7

-0.3

0.3

0.7

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

0.7

0.3

-0.3

-0.7

-I.0

-i.0

-0.7

-0.3

0.3

0.7

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0

0.0
0.0

0.3
0.7

1.0
1.0

0.7
0.3

-0.3

-0.7
-1.0

-I.0
-0.7
-0.3

0.0

0.0
0.0

0.0
0.0

0.0
0.0
0.0

0.0
0.0

0.0

0.0

0.0
0.0

0.0

0.0
0.0
0.0

0.0

0.0
0.0

0.0
0.0

0.0
1.0

1.0

1.0
1.0

1.0

1.0
1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.3

0.7

1.0

1.0

0.7

0.3

-0.3

-0.7

-i.0

-i.0

-0.7

-0.3

0.0

0.0

0.0

0.0

0.0

0.0

0.0

14.16

14.17

14.18

14.19

14.20

14.21

14.22

14.23

14.24

15.01

15.02

15.03

15.04

15.05

15.06

15.07

15.08

15.09

15. i0

15.11

15.12

15.13

15.14

15.15

15.16

15.17

15.18

15.19

15.20

15.21

15.22

15.23

15.24

16.01

16.02

16.03

16.04

16.05

16.06

16.07

16.08

16.09

16.10

16.11

16.12

16.13

16.14

16.15

16.16

16.17

16.18

16.19



131 131 116 0.04 1.0 1.0 0.0 1.0 0.0 16.20

2 132 145 0.04 1.0 1.0 0.0 1.0 0.0 16.21

133 133 144 0.04 i. 0 i. 0 0.0 i. 0 0.0 16.22

134 134 112 0.04 i. 0 i. 0 0.0 I. 0 0.0 16.23

135 135 117 0.04 1.0 1.0 0.0 1.0 0.0 16.24

136 136 6 3.78 i. 0 i. 0 0.0 0.0 i. 0 22.00

137 137 67 0.08 1.0 1.0 1.0 0.0 0.0 23.01

138 138 49 0.25 1.0 1.0 0.0 1.0 0.0 23.02

139 139 68 0.08 i. 0 i. 0 0.0 0.0 i. 0 23.03

140 140 69 0.08 1.0 1.0 -i.0 0.0 0.0 23.04

141 141 70 O. 08 i. 0 i. 0 O. 0 O. 0 -I. 0 23 • 05

142 142 71 0.08 1.0 1.0 1.0 0.0 0.0 24.01

143 143 72 O. 08 I. 0 i. 0 0.0 0.0 i. 0 24.02

144 144 73 0.08 1.0 1.0 -i.0 0.0 0.0 24.03

145 145 50 0.25 1.0 1.0 0.0 -i.0 0.0 24.04

146 146 74 0.08 1.0 1.0 0.0 0.0 -i.0 24.05

FINAL ORBITAL TIME-AVERAGED FLUXES (A=E=I) IN BTU/HR/SQ.FT. or WATT/SqCm

SURF NODE SOLAR(S) ALBEDO(A) EAR-IR(E) S+A+E S+A(ABS) IR(ABS)

1 1 85.63 0.00 0.00 85.63 85.63 0.00 1.01

2 2 74.04 0.00 0.00 74.04 74.04 0.00 1.02

3 3 259.18 0.00 0.00 259.18 259.18 0.00 1.03

4 4 18.18 0.00 0.00 18.18 18.18 0.00 1.04

5 5 73.78 0.00 0.00 73.78 73.78 0.00 1.05

6 6 0.00 0.00 0.00 0.00 0.00 0.00 2.01

7 7 74.04 0.00 0.00 74.04 74.04 0.00 2.02

8 8 0.00 0.00 0.00 0.00 0.00 0.00 2.03

9 9 8.19 0.00 0.00 8.19 8.19 0.00 2.04

i0 i0 0.00 0.00 0.00 0.00 0.00 0.00 2.05

ii II 0.00 0.00 0.00 0.00 0.00 0.00 2.06

12 12 85.63 0.00 0.00 85.63 85.63 0.00 3.01

13 13 74.04 0.00 0.00 74.04 74.04 0.00 3.02

14 14 0.00 0.00 0.00 0.00 0.00 0.00 3.03

15 15 0.00 0.00 0.00 0.00 0.00 0.00 3.04

16 16 0.00 0.00 0.00 0.00 0.00 0.00 3.05

17 17 0.00 0.00 0.00 0.00 0.00 0.00 3.06

18 18 0.00 0.00 0.00 0.00 0.00 0.00 4.01

19 19 0.00 0.00 0.00 0.00 0.00 0.00 4.02

20 20 0.00 0.00 0.00 0.00 0.00 0.00 4.03

21 21 6.02 0.00 0.00 6.02 6.02 0.00 4.04

22 22 73.78 0.00 0.00 73.78 73.78 0.00 4.05

23 23 0.00 0.00 0.00 0.00 0.00 0.00 4.06

24 24 0.00 0.00 0.00 0.00 0.00 0.00 5.01

25 25 0.00 0.00 0.00 0.00 0.00 0.00 5.02

26 26 0.00 0.00 0.00 0.00 0.00 0.00 5.03

27 27 0.00 0.00 0.00 0.00 0.00 0.00 5.04

28 28 0.00 0.00 0.00 0.00 0.00 0.00 5.05

29 29 0.00 0.00 0.00 0.00 0.00 0.00 5.06

30 30 0.00 0.00 0.00 0.00 0.00 0.00 5.07

31 31 0.00 0.00 0.00 0.00 0.00 0.00 5.08
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32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

5O

51

52

53

54

55

56

57

58

59

6O

61

62

63

64

65

66

67

68

69

7O

71

72

73

74

75

76

77

78

79

8O

81

82

83

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

5O

51

52

53

54

55

56

57

58

59

6O

61

62

63

64

65

66

67

68

69

7O

71

72

73

74

75

76

77

78

79

8O

81

82

83

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

71.85

172.93

30.81

73.78

0.00

0.00

0.00

30.81

0.00

0.00

0.00

0.00

0.00

30.81

0.00

0.00

30.81

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00
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0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

71.85

172.93

30.81

73.78

0.00

0.00

0.00

30.81

0.00

0.00

0.00

0.00

0.00

30.81

0.00

0.00

30.81

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

71.85

172.93

30.81

73.78

0.00

0.00

0.00

30.81

0.00

0.00

0.00

0.00

0.00

30.81

0.00

0.00

30.81

0.00

0.00

0.00

0.00

. 0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

5.09

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

6.01

6.02

6.03

6.04

6.05

7.01

7.02

7.03

7.04

7.05

7.06

8.01

8.02

8.03

8.04

8.05

8.O6

9.00

i0.00

ii.00

12.00

13.00

14.01

14.02

14.03

14.04

14.05

14.06

14.07

14.08

14.09

14.10

14. ii

14.12

14.13

14.14

14.15

14.16

14.17

14.18

14.19

14.20



84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

i00
i01
102
103
104
105
106
107
108
109
"_.i0
..11
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

i00
I01
102
103
104
105
106
107
108
109
ii0
Iii
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00
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0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

14.21

14.22

14.23

14.24

15.01

15.02

15.03

15.04

15.05

15.06

15.07

15.08

15.09

15.10

15.11

15.12

15.13

15.14

15.15

15.16

15.17

15.18

15.19

15.20

15.21

15.22

15.23

15.24

16.01

16.02

16.03

16.04

16.05

16.06

16.07

16.08

16.09

16.10

16.11

16.12

16.13

16.14

16.15

16.16

16.17

16.18

16.19

16.20

16.21

16.22

16.23

16.24



136 136 0.00 0.00 0.00 0.00 0.00 0.00 22.00

.37 137 0.00 0.00 0.00 0.00 0.00 0.00 23.01

138 138 0.00 0.00 0.00 0.00 0.00 0.00 23.02

139 139 0.00 0.00 0.00 0.00 0.00 0.00 23.03

140 140 0.00 0.00 0.00 0.00 0.00 0.00 23.04

141 141 0.00 0.00 0.00 0.00 0.00 0.00 23.05

142 142 0.00 0.00 0.00 0.00 0.00 0.00 24.01

143 143 0.00 0.00 0.00 0.00 0.00 0.00 24.02

144 144 0.00 0.00 0.00 0.00 0.00 0.00 24.03

145 145 0.00 0.00 0.00 0.00 0.00 0.00 24.04

146 146 0.00 0.00 0.00 0.00 0.00 0.00 24.05

*************************************

ORBITAL CALC CPU TIME (second) =

NO. OF THERMAL NODES= 147

**WARNING** NO. OF THERMAL NODES CHANGED

TEMPERATURE (DEGREES CENTIGRADE), POWER

105.290

IN WATTS

TIME= 0.000 NO. OF ITERATIONS=

T I= 26.84 T 2= 26.84 T

T 5= 26.84 T 6= 26.84 T

T 9= 26.84 T i0= 26.84 T

- 13 = 26.84 T 14= 26.84 T

17= 26.84 T 18= 26.84 T

T 21= 26.84 T 22= 26.84 T

T 25= 26.84 T 26= 26.84 T

T 29= 26.84 T 30= 26.84 T

T 33= 26.84 T 34= 26.84 T

T 37= 26.84 T 38= 26.84 T

T 41= 26.84 T 42= 26.84 T

T 45= 26.84 T 46= 26.84 T

T 49= 26.84 T 50= 26.84 T

T 53= 26.84 T 54= 26.84 T

T 57= 26.84 T 58= 26.84 T

T 61= 26.84 T 62= 26.84 T

T 65= 26.84 T 66= 26.84 T

T 69= 26.84 T 70= 26.84 T

T 73= 26.84 T 74= 26.84 T

T 77= 26.84 T 78= 26.84 T

T 81= 26.84 T 82= 26.84 T

T 85= 26.84 T 86= 26.84 T

T 89= 26.84 T 90= 26.84 T

T 93= 26.84 T 94= 26.84 T

T 97= 26.84 T 98= 26.84 T

T i01= 26.84 T 102= 26.84 T

T 105= 26.84 T 106= 26.84 T

T 109= 26.84 T ii0= 26.84 T

T 113= 26.84 T 114= 26.84 T

1 (STEADY-STATE

3= 26.84

7= 26.84

Ii = 26.84

15= 26.84

19= 26.84

23= 26.84

27= 26.84

31= 26.84

35= 26.84

39= 26.84

43= 26.84

47= 26.84

51= 26.84

55= 26.84

59= 26.84

63= 26.84

67= 26.84

71= 26.84

75 = 26.84

79= 26.84

83= 26.84

87= 26.84

91 = 26.84

95= 26.84

99= 26.84

103 = 26.84

107= 26.84

iii= 26.84

115 = 26.84

222

SOLUTION)

T 4=

T 8=

T 12=

T 16=

T 20=

T 24=

T 28=

T 32=

T 36=

40=

T 44=

T 48=

T 52=

T 56=

T 60=

T 64=

T 68=

T 72=

T 76=

T 80=

T 84=

T 88=

T 92=

T 96=

T i00=

T 104=

T 108=

T 112 =

T 116=

26.84

26.84

26.84

26.84

26.84

26.84

26.84

26.84

26.84

26.84

26.84

26.84

26.84

26.84

26.84

26.84

26.84

26.84

26.84

26.84

26.84

26.84

26.84

26.84

26.84

26.84

26.84

26.84

26.84



T
T
T
T
T
T

117= 26.84 T 118= 26.84 T 119=
121= 26.84 T 122= 26.84 T 123=
125= 26.84 T 126= 26.84 T 127=
129= 26.84 T 130= 26.84 T 131=
133= 26.84 T 134= 26.84 T 135=
137= 26.84 T 138= 26.84 T 139=
141= 26.84 T 142= 26.84 T 143=
145= 26.84 T 146= 26.84 T 147=

26.84 T

26.84 T

26.84 T

26.84 T

26.84 T

26.84 T

26.84 T

-273.16 T

TEMPERATURE (DEGREES CENTIGRADE), POWER IN WATTS

120 =

124=

128=

132=

136=

140=

144=

26.84

26.84

26.84
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26.84

TIME= 101.540 NO. OF ITERATIONS= 17 (STEADY-STATE SOLUTION)
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-i0.66 T
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26.85 T
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-32.07 T

-44.61 T

26.85 T

21.82 T

23.72 T

-47.33 T

-30.44 T
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17.46 T
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i0= -118.11 T
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ii0= 27.14 T

114= -47.25 T

118= -22.36 T

122= -38.60 T

126= 10.38 T

130= 18.58 T

134= 18.10 T

138= -73.98 T

142= -3.83 T

146= -12.41 T

3= -2.03 T 4=

7 = 29.37 T 8=

ii = -135.26 T 12=

15 = 69.34 T 16=

19 = -96.66 T 20=

23= -47.27 T 24=

27= -15.17 T 28=

31= -36.66 T 32=

35 = -37.46 T 36=

39= -8.90 T 40=

43 = -68.08 T 44=

47= -101.04 T 48=

51 = -99.44 T 52=

55= -91.68 T 56=

59= -20.60 T 60=

63 = -117.85 T 64=

67 = -36.06 T 68 =

71= -35.19 T 72=

75= -32.61 T 76=

79 = 26.30 T 80 =

83= 21.92 T 84=

87= 27.81 T 88=

91 = -31.14 T 92=

95 = -35.23 T 96=

99= -7.86 T i00=

103= 18.90 T 104=

107= 25.91 T 108=

iii = 31.93 T 112=

115= -46.41 T 116=

119= -26.32 T 120=

123= -46.63 T 124=

127= 11.84 T 128=

131= 20.00 T 132=

135= 13.94 T 136 =

139 = -28.85 T 140=

143 = -30.39 T 144=

147= -273.16 T

-87.84

-124.71

111.86

50.35

-37.81

-4.39

-9.11

-61.30

-3.64

-0.38

-22.69

-104.12

-80.95

9.21

-134.09

-31.55

-37.64

-45.76

30.55

25.50

20.42

-4.43

-32.36

-43.45

34.87

22.71

23.58

-47.33

-43.77

-26.99

11.51

15.04

19.52

-100.29

-15.21

-12.38
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PROPULSION CALCULATIONS

The requirements for the amount of fuel for corrccdons to the initial orbit insertions

were determined using:

where

I_ = 398.602

a = altitude in kilometers

The initial insertion altitude is 450 nmi (7211 km) and the safety margin is 50 nmi

(92.6 km). If Pegasus can only get the spacecraft to 400 nmi (7118.8 kin), then using the

above equation the following values are calculated:

V450 = 7.435 km/s

V400 = 7.483 km/s

AV = 7.483 - 7.435 = 0.048 km/s

This value is substituted in the following equation to determine the mass of propellant

required:
AV

mp=mi [1-exp (Is_) ]

where

rnv = mass propellant

mi = mass spacecraft

Iso = specific impulse

Substituting this value for AV in the above equation yields the fuel required to be

3.344 kilograms.
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AXIAL LOADS

1. Frame Beams

The frame axial members were modelled as columns under compression. A factor

of safety of 1.5 was used. Worst case load was the EI-IF payload structure at 135 lbs. The

honeycomb panels were assumed to have an additional 130 lbs load in the axial direction,

modeling the weight of the equipment panels.

Fc -- (8.5g) (265 lbs) (1.5) = 3378 lbf

Area = (4) (0.9375 in 2) = 3.75 in 2

3378 lbf
3.75 in 2 - 900 psi

M.S. = yield strength _ I
limit load

M.S.- 37000 psi_l=40
900 psi

2. Honeycomb Panel

The earth face honeycomb panel with the AVHRR attached was checked for stress

during launch loads.

Facing stress

a = 32 (in.)

b = 14 (in.)

where a and b are footprint dimensions of AVHRR

K = constant
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p = loadObs/in 2)

h = half thickness of panel (in.)

tf = faceskin thickness (in.)

(£)
or- (0.379) (0.004)

t_f = 11,406 psi

24000
M.S.- 11406" 1 = 1.1

BENDING LOADS

The axial rectangular tubing (1.5 in. x 2 in.) was designed to withstand the 3.5 g

pullup maneuver the Pegasus performs. The worse case payload was the EHF payload and

a factor of safety of 1.5 was used. The tubing was modelled as a cantilever beam rigidly

fLxed at the anti-earth face.

lo Maximum Deflection

_t = _uniform load + t_payload

P 13 P 13
8t-8 E I+3 E I

_t (1.5) (25) (3.5) (23) 3
- 8 (9.9(106)) (0.442)

(1.5) (135) (3.5) (23) 3
+

3 (9.9(106)) (0.442)
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.

_St= 0.178 inch

Maximum Bending Stress

For distributed load per beam:

M± C
Sb± - I

WL
Mlmax - 2

(25) (23 in.) (3.5) (1.5)
Mlmax = 2

M.l_max = 1509 lbf-in

(1509 lbf-in) (1 in.)
= 0.442 = 9219 psi

For concentrated loads per beam:

Sb 2 M2 C- I

(135) (3.5) (1.5) (23)_ 4075 lbf-in
M2- 4

Sb2 (4075 lbf-in) (1 in.)= 0.442 = 9219 psi

SbT = Sbl + Sb2 = 3414.8 + 9219 = 12633 psi

37000
M.S. - 12633 " 1 = 1.9
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1 Maximum Shear Stress

The general formula for horizontal shearing stress is:
QV

Sh=Ib

where

Q = area moment

V = vertical shear force

I = moment of inertia of cross section

b = width across the beam

therefore:

(0.8026 in 3) (800 lbf)

Sh = (0.442 in 4) (1.5 in)

Sh = 968 psi

30000 psi _ 1 = 29
M.S. - 1000 psi

HONEYCOMB PANELS

The honeycomb panels are designed for stiffness to meet design

minimum natural frequency and for stress due to dynamic loads.

criteria for

1. Fundamental Natural Frequency Calculations

To avoid coupling with the primary structure, the fundamental natural frequency is

assumed to be 30 Hz. The fundamental natural frequency of the panel is given by:
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where

a= 23 in.

b = 28 in.

13= 19

_, = 28.92 kg/m 2

D = 3.84(101°) t h 2

h = 3/8 in

t=0.1 mm

2. Stress Due to Dynamic Acceleration

Assuming a uniform dynamic acceleration of 20g across the panel, the maximum

stress in the face skin of the center of the panel is:

a 2

Gmax ---'-_ _t h

(0.3453) ((26) (20)(28) (32)) (28)2

- (6) (0.004) (0.375)

_max = 17456 psi

37000
F.S. - 17456 - 2.1
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APPENDIX H

COMMUNICATIONS SUBSYSTEM TABLES

beam gain
4 32.00

5 30.75

6 29.50

7 28.25

8 27.00

9 26.25

10 25.50

11 24.75

12 24.00

13 23.80

14 23.60

15 23.40

16 23.20

17 23.00

18 22.80

19 22.60

20 22.40

21 22.20

22 22.00

23 21.67

24 21.33

25 21.00

26 20.67

27 20.33

28 20.00

TABLE H.1. Supplement To Figure 3.6.

230



]e

750 5 06

10:>3 7, 25

1250 900

1500 10 54

1750 11.94

20(30 13.25

2250 14.50

2500 15 70

2750 16 87

3L"O0 18.01

3250 19.13

3500 2Q 24

3750 21.33

4_'3 2241

4250 23 49

4500 2456

4750 25 63

5L'O0 26 70

5250 27 76

5500 28 83

5750 29 9C

600C 30 97

625C 32 OE

650C 33 1

675E 34 22:

700C 35 31

725( 36 4C

750( 3751

775( 38 6:_

800C 39 7,_

825( 40 B(

8"50( 42 0(

875( 43 1,

900( 44 2_.

925( 45 4[

95':": 46 6:

975( 478

10Z,Lqt 49 0

10251 50 2

1050' 51 4

1075 52 6

1100 539

1125 55 1

115C 56 4

1175 577

120: 58 c

122E 60 2

125E 61 6

1275 62

130( 64:

132[ 65 (

135( 67 (

137 _. 68,

140(. 69!

142! 71.

a_T_I

-'28q35-
28.O0

2800

2800

2800

28OO

28(30

25 O6

22 62

2061

18.92

17.49

16.26

1519

14.25

1342

1268

1202

11 42

10.88

103g

994

952

9.1E

88E

84]

81]

7 8 c.

76:

73_

7.I_

69,

67:

65,

6 3_

611

6 O;

58

57

55

54

53

52

5E

4c_

4E

4]

4(

4(

4z

4,

4:

4;

4."

4.(

I 4.1

28.00 I 28.00

28.001 28.00

28.001 2800

28.00 2800

28.00 2800

28.00 28.00

28.00 28.00

28.00 2800

28.00 28.00

2800 28.00

2800 28OO

28.00 2800

2800 28.00

28.00 2800

26.48 2800

25.06 2800

2378 28.0C

22.62 28 OC

21 57 280(:

2061 280(

1973 280£

18.92 280(

18.18 280(

17.49 280(

1685 280(

16.26 26.0(

1571 280(

15.19 28.0(

28.0(

2801

27.2!

134,_ 264;

13.04 257

25 0

244

23 7

11.71 231

11.4; 2"2.6

11.1, 22.C

21.5

21 .E

206

1011 201

97; 19,:

18_

91 181

89 17l

17.,

17.

8.4 161

82 16_

8.1 16.:

8[ 15'

26OO I
I

2800

2800

2800

2800

2800

2800

28.00

2800

2800

2800

26.00

28.00

2800

28.00

2800

28.00

28.00

28 O0

2800

28 (3O

2800

2600

28 (30

28.00

28 OC

280(::

260(:

280(

280(:

28 0(

28 0(

280(

28 O(

28 O(

280(

280(

280(

28.0(

2801

280

28/3'

280

280

280

27 5

269

264

26c

255

25E

24.6

24.1

23]

14750 74.25

15000 75.74

15250 77.25

15500 78 78

15750 80 34

16000 81 91

162'50 83.51

16500 85.13

16750 86.77

17000 8844

17250 90.14

17500 9186

17750 9361

18000 95.38

18256 97.19

1850C 990,3

1875(: 1009(:

1900(: 1028£

1925(: 104I 7z

19'50[. 10671

1975(: 108 7,_

20(30( 1107;

2025( 11 2.8(

205O( 1150(

2075( 1 t 711

2100( 1194

2125( 121.6_

2150( 1240:

2175_ 126.4'

2200 1288

2"2"2_ 131 3

2250 133 9

2275 136 6

2300 139 4

2325 1422

2350 145.1

2375 1487.

240(] 151 _:

2425 154 (Z

245(: 158 E

247f 161 .(Z

165 z

252E 169 ,_

255( 173 (

257. c 178 ;

2C43( 183;

262{ 188 (

265( 194 "

267{ 201 I

270( 2t 0

272!, 223;

273_ 238

fr£JS-q

4.00

4.00

4.00

400

4.00

400

4.00

4.00

4.00

4.00

4.00

4.00

4.00

4.00

400

400

4.00

400

400

400

400

4.0Q

40(:

40(:

4.0(:

4.0(:

4.0([

4.0(

40(

4.0(

40(

40(

40(

40_

4.r3

40

40

4.0

40

4.0

40

4.0

40

4C

4C

4C

4E

4E

4[

4C

4.E

4.(

_m2

7.76

763

750

7.38

727

7151

7.04

694

683

673

664

6.54

645

6.36

627

619

611

6 03

5 95

587

580

5 72

5 65

5.59

552

5 45

5 39

533

521

51E

4 4!

44:

44

41

beam3

1544

15.19

1494

14 70

14 47

1425

1403

1382

t362

1342

13.23

1304

1286

12.68

1251

1234

1218

1202

11 86

11 71

11 56

11 42

11 28

11 14

1101

10 88

1075

10.63

1051

1O39

1027

1016

10 05

9 94

9 83

9 73

9 63

953

943

933

9 24

915

906

897

888

B 80

871

8 63

8 56

847

8 40

8 36

22 99

22 62

22 25

21 91

21 57

21 24

20 92

2061

2'031

2002

19.73

1946

1919

1892

1867

1842

1818

1795

1772

1749

1727

1706

1685

1665

1645

1628

1607

15 89

1571

1553

1536

1519

1502

14 86

1470

1455

1440

1425

14 10

1396

1382

1369

1355

1342

1329

136

1304

1292

12 80

1268

1256

12 52

TABLE H.2. Supplement To Figures 3.7 & 3.8.
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TABLE H.3. Supplement To Figures 3.9 &3.10.
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}Gain vs. Off Angle

Angle Gain Relative
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-5.38

-5.79

-6.21

-6.64

-7.1 0

-7.56

-8.04

-8.53

-9.04

-9.57

-10.11

-1 0.66

-11.23

-11.81

_Gain vs. Off Angle

Angle Gain Relative

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

20.1 9

1 9.59

1 8.98

1 8.35

1 7.71

1 7.05

1 6.38

1 5.69

1 4.99

1 4.27

1 3.54

-11.81

-1 2.41

-1 3.02

-1 3.65

-1 4.29

-1 4.95

-1 5.62

-1 6.31

-1 7.01

-1 7.73

-1 8.46

TABLE H.4. Supplement To Figure 3.12.
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?AWERROR- >

_carq Ar_gle

(degrees}

0

1

2

3

4

5

6

7

B

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

3O

31

32

33

34

35

3G

37

38

39

40

4t

42

43

44

45

46

47

48

49

50

0._ I °.31 o5 i o.z I o,9 I _ 1
GAIN .VS SCAN ANGLE OFF OF NADIR FOR VARIOUS YAW ERRORS

(ALL IN dB)

1.51 21 3

O.OOE+O0 iO.OOE+O00.OOE+O00.OOE+O0 QOOE+O00.OOE+O00, OOE+O0 O.OOE+O00.OOE +00

-69E-10 -6.2E-09 -1,7E-08 -34E-08 -55E-Q8 -6,8E-08 -1.5E-07 -2.7E-07

-27E-09 -2.5E-08 -68E-08 -1.3E-07 -22E-07 -27E-07 -6.L;:E-07 -1.1E-06 -2.5E-06

-6.2'E-09 -55E-08 -1.5E-07 -30E-07 -5.0E-07 -62E-07 -1.4E--06 -25E-06 -55,E-06

-1.1E-O_B -9.BE-Q8 -2.7E-07 -5.4E-07 -8.9E-07 -1.1E-06 -2.5E-06 -4.4E-06 -9.8E-06

-1.7E-08 -1.5E-07 -4,3E-07 -B4E-07 -1.4E....06 -1.7E-.06 -3.8E-06 -GSE.-.06 -15E-05

-2.5E-08 -22E-07 -61E-07 -1.2E-06 -2.0E-06 -25E-06 -5.5E--06 -98E-06 -2,2E-05

-33E-08 -3.0E-07 -B4E-07 -1.6E-06 -2.7E-06 -3,3E-06 -7.5E-06 -1.3E-05 -3.0E-05

-4,4E-08 -3.9E-07 -1.1E-06 -21E-06 -3.5E-06 -4.4E436 -98E-.06 -1.7E-05 -3.9E-05

-55E-08 -5.0E-07 -1.4E-06 -27E-06 -4.5E-06 -5.5E-06 -1.2'E-05 -2.2E-05 -5.0E-05

-G8E-08 -6,1E-07 -1.7E-06 -3,3E-06 -55E.-06 -.6.8E....06 -1.5E-05 -27E-05 -61E-05

-82E-08 -7.4E-07 -20E-06 -4.0E-06 -66E-06 -82E.06 -1,8E-05 -33E-05 -7.4E-05

-97E-08 -B.7E-07 -2.4E-06 -4,8E-06 -7.9E-06 -9.7E-06 -2, L;:3E-05 -3.9E-05 -8.7E-05

-11E-07 -1.0E-06 -2.8F__-06 -5£:_-06 -9,2E-06 -1.1E-05 -2.6E-05 -4._-05 -1,0E-04

-1.3E-07 -1.2E-06 -33E-06 -64E-06 -1,1E-05 -1.3E-05 -3,0E-05 -53E-05 -1,2E-04

-1,,5E-07 -1.4E-06 -3.8F__-06 -7.4E-06 -12E-05 -1,5E.-05 -34E-05 -6.0E_05 -1.4E-04

-1.7E-07 -1,5E-06 -4.3E-06 -8.4E-06 -1.4E-05 -1,7E-05 -3.8E-05 -6,8E-05 -1.5E-04

-1.9E-07 -1,7E-06 -4.BE-06 -94E-06 -1.6E-05 -1.9E-05 -4.3E-05 -7.7E-05 -1.7E-04

-2.1E-07 -1.9E-06 -54E-06 -1.1E-05 -1.7E-05 -21E-05 -4,8E-05 -8.6E-05 -1.9E-04

-2.4E-07 -21E-06 -GOE-06 -1.2E-05 -1.9E-05 -2.4E-05 -5,4E-05 -9.5E-05 -21E-04

-2C:::_E-07 -2,4E-06 -6.6E-06 -1.3E-05 -21E-05 -2.6E-05 -5.9E-05 -1.1E-04 -24E-04

-29E-07 -2.6E-06 -7.2E 06 -1.4E-05 -2.3E-05 -29E-05 -6,5E-05 -1.2E-04 -26E-04

-3 2E-07 -2.8E-06 -7.9E-06 -1,5E-05 -2.6E-05 -3.L:_-05 -7.1E-05 -1.3E-04 -28E-04

-3 4E-07 -3 1E-06 -8,6E-06 -1 7E-05 -28E-05 -34E-05 -7.7E-05 -1.4E-04 -31E-04

-3 7E-07 -33E-06 -9.3E-06 -1.8E-05 -30E-05 -3.7E-05 -8.4E-05 -1,5E-04 -33E-04

-40E-07 -3GE-06 -1,OE-05 -20E-05 -33E_-05 -40E-05 -9.0E-05 -1,6E-04 -36E-04

-4.3E-07 -3.9E-06 -11E-05 21E-05 -35E-05 -4.3E-05 -9.7E-05 -1 7E-04 -39E-04

-4,SE-07 -4.2E-06 -12E-05 -23E-05 -3.8E-05 -46E-05 -10E-04 -t.9_ 04 -4_-04

-50E-07 -4.5E-OG -12E-05 -24E-05 -4,0E-05 -50E-05 -11E-04 -20E-04 -45E-04

-53E-07 -4.BE-06 -1.3E-05 -25E-05 -4.3E-05 -53E_-05 -1,2E-04 -21E-04 -48_.-04

-5C_E-07 -5.1E-06 -1.4E-05 -28E-05 -4.6E-05 -5.6E-05 -1.3E-04 -2.2'E-04 -5 1E-04

-6.0E-07 -5.4E-06 -1.5E-05 -29E-05 -4.8E-05 -6.0E-05 -1.3E-04 -2,4E-04 -5 4E-04

-6.3E-07 -5.7E-06 -1.6E-05 -3 1E-05 -5.1E-05 -6.3E-05 -1.4E-04 -2.5E-04 -5 7E-04

-6 7E-07 -6.0E-06 -1.7E-05 -3,3E-05 -5.4E-05 -6 7E-05 -1.£:.E-04 -2.7E-04 -60E-04

-7.0E-07 -6.3E-06 -1.8E-05 -34E-05 -5.7E-05 -7.0E-05 -1.6E-04 -28E-04 -63E-04

-7.4E-07 -6,7E-06 -1.8E-05 -3.5E-05 -6.EE-05 -7.4E-05 -1.7E-04 -30E-04 -57E-04

-78E-07 -7,0E-06 -1.9E-05 -3 8E-05 -G3E-05 -7.8E-05 -1,7E-04 -3 1E-04 -7.0E-04

-81E-07 -7,3E-06 -20E-05 -4.0E-05 -66E-05 -8.1E-05 -1.8E-04 -3:3E-04 -7,3E-04

-85E-07 -7,7E-06 -21E-05 -4.2E-05 -69E-05 -8.5E_5 -1.9E-04 -34E-04 -77E-04

-8 9E-07 -8,0E-06 -2.2E-05 -4.4E-05 -7.2E-05 -8.9E435 -2.CE-04 -36E-04 -80E-04

-9 ;3E-07 -8.4E-06 -2 3E-05 -4 6E-05 -7.5E.-05 -9.3E 415 -2.1 E-04 -3 7E-04 -8 4E-04

-9.7E-07 -8.7E-06 -2 4E-05 -4.7E-05 -7.BE-05 -9 7E-05 -2.2E-04 -3 9E-04 -B 7E-04

-1.0E-05 -9.1E-06 -25E-05 -4.9E-05 -8,2E.-.05 -1.QE-04 -2.;3E-04 -40E-04 -91E-04

-1,0E-06 -94E-06 -26E-05 -51E-05 -8.5E-05 -1.0E-04 -24E-04 -4.2'E-04 -94E-04

-1.1E-06 -9.8E-06 -27E-05 -53E-05 -8.8E-05 -1.1E-04 -24E-04 -4.3E-04 -98E-04

-1.1E-06 -1.0E-05 -28E-05 -55E-05 -9.1E-05 -1.1E-04 -25,E-04 -4.,5E-04 -1.0E-03

-1 2'E-06 -1.0E-05 -29E-05 -57E-05 -9.4E-05 -1.2E-04 -26E-04 -4.7E-04 -1.0E-0,3

-12E-06 -1.1E-05 -3,0E-05 -59E-05 -9.7E...05 -1.2E-04 -27E-04 -4.8E-04 -1.1E-03

-12E-06 -1.1E-05 -31E-05 -61E-05 -1.0E-04 -1.2E-04 -28E-04 -5.0E-04 -11E-03

-13E-06 -1.L3E-05 -32E-05 -63E-05 -1.0E-04 -1,3E-04 -2.9E-04 -5.1E-04 -1.2E-03

-1.3E-05 -1.2E-05 -3.3E-05 -55E-05 -1.1E-04 -1.:3E-04 -30E-04 -53E-04 -1.2E-03

TABLE H.5. Supplement To Figure 3.13.
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APPENDIX J

LINK ANALYSIS

Each of the various transmission frequencies, altitudes, modulation techniques and

antenna gains must be examined to insure that a proper carrier-to-noise ratio (C/N) is

maintained. For the design of the links in this satellite, a maximum bit error rate (BER) of

10 -6 was desired. In order to achieve this BER, a C/N of 14 dB must be achieved for FSK

modulation or 11 dB for PSK modulation. Since the majority of the carriers are FSK due

to the Frequency Hopping of the carrier, the link analysis assumes FSK modulation.

Along with the 14 dB, a link margin of 4 dB was added for weather and atmospheric

attenuation as well as any other losses that may not have been considered. A "Closed

Link" in this satellite is one in which a total C/N of 18 dB is achieved.

Several worst case assumptions were made for this analysis. The ground station

elevation angle was assumed to be 20 ° for EHF frequencies and 5 ° for lower frequencies.

The worst case altitude is at apogee except for the variable beamwidth antenna which must

be analyzed for the entire orbit. The ground station for the EHF frequencies was assumed

to be the SCAMP Terminal. Figure J. 1 shows the EHF link. The ground station for SHF

TI'&C was assumed to be channel 1 of the space ground link subsystem (SGLS) of the Air

Force Satellite Control Facility (AFSCF) at Thule, Greenland (Thule Tracking Station -

TTS). The ground station for the AVHRR payload was assumed to be the TIROS-N earth

terminals. Data for each earth station follows:
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;LS TT&C

Ground

Station

Scamp
Terminal

FIGURE J. 1. EHF Link Diagram
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DataRate:

RcvGain:

TransmitEIRP:

Uplink Freq:

DownlinkFreq:

2.4 kbps

39.92dB

48dB

44GHz

20GHz

DataRate:

RcvGain:

TransmitEIRP:

Uplink Freq:

DownlinkFreq:

300bps

48.2dB

39.69dB

1.763721GHz

2.2 GHz

TIROS-N (HRPT)

Data Rate:

Rcv Gain:

Transmit EIRP:

Uplink Freq:

Downlink Freq:

665 kbps

30 dB

NA

NA

1.71 GHz
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TIROS-N (APT)

Data Rate: 2000 bps

Rcv Gain: 30 dB

Transmit EIRP: NA

Uplink Freq: NA

Downlink Freq: 137.5 MHz

TIROS-N (TI'&C)

Data Rate: 8.32 kbps

Rcv Gain: 30 dB

Transmit EIRP: NA

Uplink Freq: NA

Downlink Freq: 137.77 MHz

TIROS-N (Command Uplink)

Data Rate: 1000 bps

Rcv Gain: NA

Transmit EIRP: 27 dB

Uplink Freq: 148.56 MHz

Downlink Freq: NA

Given the above data and the orbital information and design characteristics of the

MPS satellite bus and payloads, link analysis was done for all channels and is listed in

Tables J.1 and J.2. An example of the link analysis calculations follows:

1. The cartier-to-noise ratio is the amount of signal energy which reaches the

receiver divided by the noise level at the receiver. Equation J. 1 is a simple formula for

calculating the C/N for the uplink. Equation J.2 is for the downlink.
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C PtGtG.
N - LukTuB

C PsGdGr

N - LdkTdB

(J.l)

(J.2)

Equation J.3 and J.4 are for calculating C/N when all the data is in decibels.

C
= Pt + Gt + Gu - Lu - k - Tu - B (J.3)

C
_ = Ps + Gd + Gr - Ld- k - Td - B (J.4)

where:

Pt = power transmitted

Gt = gain of transmitting antenna

Gu = gain of uplink antenna

Lu = free space losses in uplink

k = Boltzmann's constant (-228.6 dB)

Tu = noise temperature in uplink

B = noise bandwidth

Ps = transmitted power from satellite

Gd = gain of downlink antenna

Gr = gain of receive antenna

Ld = free space losses in downlink

Td = noise temperature in downlink

2. Before calculating C/N, the different parameters must be obtained. Equation J.5

is the general formula to obtain the gain of an antenna.
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G=ri (rffD___._)2 (J.5)

where:

1"1= efficiency of the antenna

f = frequency

D = antenna diameter

c = speed of light

3. Free space loss can be obtained with equation J.6.

4rffd 2
L = (_) (J.6)

where:

d = slant range (use Equation J.7)

[ Re cosE
d 2=(Re+H) 2+Re 2-2Re(Re+H) sin [E+sin -1 \Re + H) ] (J.7)

where:

Re = radius of the earth (6378 km)

H = altitude

E = elevation angle earth antenna

4. Once the C/N is known for both uplink and downlink, they are combined with

Equation J.8 to determine the total C/N. This number must be higher than 18 dB to close

the link and insure a 10 -6 BER.

-1 -1 -1

(-'_') = (-'_') U + (-_-) d (J.8)
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TableJ.1andJ.2 showthelink analysisfor theMPS satellite. Noneof the C/N's

fall below 18dB andthereforeall of the links havesuitablemarginsto insureamaximum

BER of 10-6. For thevariablebeamwidthantenna,the analysishadto bedoneover the

entire orbit. Figure J.1 showsthe C/N versusaltitude and Figure J.2 showsthe C/N

versustimeafterperigee.

As a final noteon theadvantageof variablebeamwidthantennas,FigureJ.3shows

a comparisonbetweena fixed beamwidthantennaanda variablebeamwidthantennafor

maintaininga 2000km swathwidth. Thefixed beamwidthantennahasa 28° beamwidth

for theentireorbit. Thevariablebeamwidthvariesfrom 28° to 4° asnecessary.FigureJ.3

showsthatthevariablebeamwidthhasadefiniteadvantagethatincreaseswith altitude. At

apogee,the variable beamwidthantennahas almost a 10 dB advantageover fixed

beamwidthantennas.

m
"ID

z
O

45.

C/N VS Altitude
(for Several Swath Widths)

40-

35

30-

25-

20-

t
0 _b l's io 2's i 30

Altitude (Kin)

(Thousands)

FIGURE J.1. C/N Versus Altitude
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EHF Communications Sample Link Analysis

Apogee

Freq Up (Hz) 4.4E +10

Freq Down [Hz) 2E + 10

Data Rate (bps) 240(3

Att (km) 27358

Slant Ang(rads) 0.35

S_ant Range(kml 3101 7.95

UPUNK (in dB):

EIRPt 48

Xmit Power 1,5

Xmit Gain 465

FS LOSS 215 14

Rcv Gain 31,9

Boltz Const -228,6

Noise 7emp 31

NOISE BW 3681

DOWNLiNK (indB)

Xmit Powe, 1 76

Xmit Gain 31 9

FS LOSS 20829

Rcv Gain 39.92

BOLTZ CONST -2286

No,se Temp 29

NOISE BW 3681

C/N UP 2554

C/N DOWN 28.07

IFHF I I C (VBWA)

15000 km 20 degs _pogee 154300 20 degs

4.4E+10 4.4E+10 4.3E+10 4.3E+10 4.3E+10

2E+10 2E+10 19E +10 1.9E +10 1.9E +10

24(30 2400 300 3(30 300

1500(3 4050 273,58 15QO0 4D50

0.35 0.35 Q35 0.35 0.35

18339.28 6352.225 31017.95 18339.28 635222

48 48 48 48 48

1.5 1.5 1.5 1.5 1.5

46.5 465 465 46.5 465

210.58 201.37 214.94 210.38 201.17

275 20 31.9 27.5 20

-228 6 -228.6 -2"28. 6 -228. 6 -228 8

31 31 31 31 31

36.81 36.81 2778 27.78 27 78

1.76 1 76 1 76 1.76 1.76

27.5 20 31.9 27.5 20

203.73 194,52 207,85 20328 19408

39.92 39.92 39.92 3992 3992

-228. 6 -228 6 -2"28.6 -228 6 -228 6

29 29 29 29

_Y5.81 3681 27.78 27.78 27.78

2571 27.42 34.78 34.94 3665

28.24 29.95 37.55 3771 39.42

C/N TOTAL 23.62 23.78 25.49

(P-/C Horns) (A-E Ant)

t_,pogee _,pogee

1.76E +09 176(:X3(X3C)(_

2.20E +09 _200000000

300 300

27358 27358

0.35 0.35

3101795 31017.95

39.69 39 69

-3.01 -301

427 42 7

187.20 187.1 8

2 2

-228.6 -228 6

31 31

2778 27.78

1 76 I 76

2 2

18912 18912

482 482

-228 6 -228 6

29 29

27,78 2778

2431 24 32

34.66 34 66

TABLE J.l. Link Analysis Data For EHF Payload
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Freq Up (Hz)

Freq Down (Hz)

Data Rate (bps)

AIt (km)

Slant Ang (rads)

Slant Range(km)

UPLINK (in dB)::
EIRPt

Xmit Power

Xmit Gain

FS LOSS

Rcv Gain

Boltz Const

Noise Figure
NOISE BW

DOWNEiNK (in dB)
Xmit Power

Xmit Gain

FS LOSS

Rcv Gain

BOLTZ CONST

Noise Figure

NOISE BW

C/N UP

C/N DOWN

HRPT APT _I&C Command

1,49E+08

1.71E+09

665000

824

0.35

1812.15

1.38E+08

2000

824

0.09

2835.13

'1.37E+08

8320

824

0.09

2835.1 3

11.76

4.05

162.25

3O

-228.6

29

61.24

21.92

-3.01

0

144.26

30

-228.6

29

36.02

46.31

-3.01

0

144,21

3O

-228.6

29

42.21

40.17

1000

824

0.09

2835.13

27.00

-3.00

3O

144.93

0

-228.6

29

33.01

48.66

TABLE J.2. Link Analysis Data For AVHRR Payload

243



rn

z
0

45-

C/N VS Time after Perigee
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40 ......................................................................................................................
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FIGURE J.2. C/N Versus Time After Perigee

45-

C/Iq vs Altitude
(Swath Width Greater Than 2000 KM)

rn
q3
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z

(.9

40-

35

30-

25

2O

15
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\
\ 2000 Km swath widlh stalls

\ ............................. ;/* ..........................................................................................................
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PERIGEE Altitude (Km)
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FIGURE J.3. Comparison of C/N Versus Altitude for Fixed and Variable Antennas
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TABLE J.1. Supplement To Figures J. 1 & J.2.
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19000 102' 80

19250 104 74

19500 10671

19750 10872

20003 11077

2O25O 112 86

20500 11500

20750 11718

21000 11941

2125O 121 69

21500 124 03

21750 t 26 42

22000 12887

2'2250 131 39

22500 l 33 98 i

22750 136 65

2'3000 139 40

2325O 142 23

23500 145 16

23750 148 20

24000 151 35

24250 154 64

24500 158 06

24750 161 66

25000 165 43

25250 169 43 I

173 68

25500 178 25

26000 183 20

2625O 188 64 I

26500 i 19476 'l

26750 I 201 87
I

27ooo! 2_o71I
27250 223 86

27358 238 72

28 44 25 91

28 34 25 91

28 24 25 91

2815 2590

2805 2590

2796 2589

27 87 25 88

27 77 _ 2588

27 68 25 87

27 59 25 86

27.5O 25 84

27 41 25 83

27 33 25 82

27 24 I 25 81

27 15 25 79

27 07 25 78

2699 2575

26 90 25 75

26 82 25 73

26 74 25 71

26 66 25 69

26 58 25 68

26 50 25 66

26 42 25 64

26 34 25 62

26 27 25 60

2619 25 58

2611 2556

26 04 25 53

25 97 25 51

25 89 2549 i

25 82 25 47

25 75 25 44

25 68 25 42

25 64 [ 25 41

2044 1925

2045 1920

2046 1915

2047 1909

2049 1904

2050 1899

2051 1894

2051 1888

2052 1883

20 53 18 78

20 53 18 73

2053 1867

2054 1862

20 54 18 57

20 54 18 52

2053 1847

2O53 1841

2053 1836

2052 1831

20 52 18 26

2051 1821

2051 1816

2050 1811

2049 1806

20 48 18 01

2047 , 1796

2046 1791

2045 I 1786

20 44 17 8t

20 43 17 76

2042 1771

_"041 1766

_"039 1761

2038 17 56

2037 I 1754

3097 2844

3087 2844

30 77 2'8 44

30 68 28 43

3058 2843

3049 2842

30 39 28 41

30 30 2'840

30 21 28 40

3012 2839

30 03 28 37

2994 2836

29 86 28 35

29 77 28 34

29 68 28 32

29 60 28 31

29 52 28 29

29 43 28 28

29 35 28 26

2927 2824

2919 2822

2911 2820

2903 2'819

2895 2817

28 87 28 15

2880 2813

2872 2811

28 64 I 28 08

2857 l 2806

28 50 28 04

28 42 28 02

2835 2800

2828 2797

28 20 27 95

2817 2794
I

22 g 7

22 g7

22 99

23 O0

23 D2

23 03

23 04

23 04

23 05

23 06

23 06

23 06

23 06

23 07

23 06

23 06

23 06

23 06

23 05

23 05

23 04

23 04

23 03

23 02

23 01

23 (3O

22 99

22 98

22 97

22 96

22 95

22 93

22 92

22 91

22 90

21 78

21 73

21 68

21 62

21 57

21 52

21 46

21 41

21 36

21 31

21 25

21 20

2115

21 10

21 05

20 99

20 94

20 89

20 84'

20 79

2074

2O 69

20 64

2O59

2O 54

2049

2044

2O39

20 34

2O29

20 24

2019

20 I4

2O O9

2O O7

2651

26 42

26 32

26 22

2613

26 03

25 94

25 85

25 75

2566

2558

25 49

25 40

2531

25 23

2514

25 06

24 98

24 89

24 81

24 73

24 65

24 57

24 49

24 42

24 34

24 26

2418

24 II

24 04

2397

23 89

23 82

23 75

23 72

23 98

23 98

23 98

2'397

23 97

2396

23 96

23 95

23 94

23 93

23 92

23 91

23 89

23 88

23 87

23 85

23 83

23 82

23 80

23 78

2377

23 75

23 73

2371

23 69

23 67

23 65

23 63

23 61

23 58

2356

23 54

23 52

23 49

23 48

1851

1852

1853

1855

1856

1857

1858

1859

1859

1860

1860

1861

1861

1861

1861

1861

1860

1860

1860

1859

1859

1858

1857

1856

1856

1855

18 54

1853

1851

1850

1849

1848

1847

1845

1845

1733

1727

1722

1717

1711

1706

1701

1696

1690

16 85

1680

1675

1669

1664

1659

1654

1649

1643

t638

1633

1628

1623

1619

1613

1608

1603

1598

1593

1588

1583

15 78

15 73

1568

1564

t561

TABLE J.2. Continuation of Supplement To Figures J. l & J.2.

246



air

i 500

i 750
1000

1250

1500

17_o
2OOO

225O

25O0

2750

3OOO

3250

3500

3750

4000

4250

4500

4750

5000

5250

550O

5750

6000

6250

6500

6750

7000

7250

7500

7750

8OO0

8250

8500

8750

9000

9250

9500

9750

10000

10250

10500

10750

11000

11250

11500

11750

12000

12250

12500

12750

13000

13250

13500

13750 1

14000

14250

14500

14750

C/i4{28 deg) ! = C/Nivar )

42.06 4206

39,10 3910

37,06 37,06

35.51 35.51

34.25 34.25

3320 3320

3229 32,29

31.50 31.50

3079 30.79

30.15 3015

29.56 2956

2902 29.02

2852 2852

28O6 28.06

27.62 27.62

27 21 27.21

26 82 2682

26 45 26 45

2610 2610

2577 25 81

25.45 2569

2515 25 56

2485 2543

2457 25.29

2430 2516

2404 2503

23 79 24.89

2354 24.78

23 31 2462

2308 24.49

2285 24.36

2264 24.23

22 43 24.10

2222 23 97

2202 23 84

21.83 2372

21.64 2359

21.45 2363

2127 23 66

21.10 23.70

2092 2372

2076 2374

2059 23.75

2043 23 77

2027 2377

2011 2377

1996 2377

1981 23.77

19.66 23.76

1952 2375

19 38 23,74

19 24 2372

19.10 23.70

18 97 23.88

18 83 2366

1870 2364

18 58 23.67

18.45 23.71

n. , C/N(28 deg) ClN(var)

1 5000 t

15250 {

1 5500 I

15750 I

16000 I

16250 [

165OO I

16750 I

17000 I

17250 I

17500 I

17750 I

180OO I

18250 I

18500 I

18750 I

19OOO I

19250 t

19500 t

19750 t

20O00 t

20250 )

205OO {

20250 I

21000 I

21250 I

21500 I

21750 I

22000 ]

22250 ]

22500 ]

22750 I

2300O I

23250 I

23500 I

23750 I

24000 I

24250 I

24500 I

24750 I

25000 I

25250 I

2550O I

25750 I

26000 I

26250 I

26500 I

26750 I

27O00 I

27250 I

27358 I

1833 2375

1820 23,78

1808 2381

17.96 23.84

17 85 23.86

17.73 23.88

1762 23.90

1751 2392

17.39 23.93

1729 2395

1718 2396

17 07 23 97

16 97 2397

16 86 2398

t6 76 23,98

16 66 23 98

16 56 2398

16 46 2398

16 36 2398

16 27 23 97

617 2397

608 2396

5 98 23.96

5 89 23 95

5 80 23 94

5 71 23 93

562 2392

553 23 91

544 23 89

5 36 23.88

5 27 23 87

519 23 85

510 23 83

5 02 23 82

494 2380

486 2378

4 78 23 77

470 2375

4 62 23 73

4 54 23 71

4 46 2369

4 38 23 67

4 31 23 65

4 23 23 63

416 23 61

4 08 23 58

4 01 23 56

3 94 23 54

3 86 23 52

3 79 23 49

3,76 2348

TABLE J.3. Supplement To Figure J.3.

247



TABLE J.4. Slant Ranges and Free Space Losses Versus Altitude.
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DEFENSE ADVANCED RESEARCH PROJECTS AGENCY (DARPA)
ADVANCED SPACE TECHNOLOGY PROGRAM (ASTP)

ADVANCED SATELLITE SUBSYSTEM TECHNOLOGIES DEMONSTRATION
' STATEMENT OF WORK

1.0 PURPOSE

"l'his Statement of Work (SOW) defines the rusks to be performed by the Contractor to develop the system

designs for a multi-mission-capable small standard spacecraft bus and a meteorological satellite based on the

standard spacecraft bus. In addition, d_e Contractor is tasked to develop a system design for a spacecraft to
incorlxorate and demonstrate advanced technology spacecraft and payload subsystems and components CnxXCl}tly

being developed for DARPA.

2.0 BACKGROUND

The Defense Advanced Research Projects Agency (DARPA) Advanced Space Technology Program

(ASTP) is defining, developing and demonstrating high payoff advanced technology applications to improve space

syslem operational support to military commanders. The focus of the program is to advance the state-of-the-art for

mo_e capable, smaller and lighter satellite systems, subsystems and components.

The current program includes: the devclopnmnt, launch and demonstration of small, lightweight UI IF

communications satellites; lhe/light test ot the PEGASUS Air Launched Vehicle (ALV) to evaluate its launch

flexibility, practicality anti utility to place small payloads into orbit; anti the development and demonstration of the

ground launched Sl_mdard Small Lat,nclt Vehicle (SSLV) which is to be capable of placing a miniml,m payload of

I000 pounds into a ,I00 nautical mile circular polar orbit. 13oth the ALV and SSLV are to enable delivery of a small
spacecraft 1o low earth od_it within 72 hours of the launch command (i.e., vellicle/spacecraft integration, final

-'chicle assembly, checkout and launch activities are to occur within this 72 hour period).

Consistent with the ASTP objectives is the ptnsuit of advanced space system technologies that will enable

the DoD to acquire lightweight, cost-effective military satellites which can 1__dedicated to Theater commanders to

assure availability and teconstitution after attack. Subsystem and compone,lt innovatious me included in this

Imrsu it.

Ihol>oSals a(lthessing advanced technology space systems, subsystems and cofiq)oncnts have been received

in response to a Broad Agency Announcement (BAA 1t88-13) issued by [)ARPA. This SOW is a formalization to a

prolx_sal selected for consi(ler:ttion.

lhe proposal is IOdesign a small, low-cost, lightweight, general ptHpose spacccrafl bus capable of
acconm_odating any of a variety of mission payloa¢l_;. Such a bus is expected to provide major benefits to the

military, as well as tim scientific and technical community. Typical payloads envisioned include those associated

with inctcotplogical, communications, st, rveillance and tracking, target location, and navigation mission meas.

Spccilic emphasis is given in the inoposal to using a multi-spectral meteorological payload to demonsuate the

military utility and be|milts of a general purpose multi-mission capable spacecraft bus.

As separate efforts, I)ARPA is sponsoring the ¢levelopment of advanced technology spacecraft and payload

subsystems and comlxmcnts. A small slantl_ud spacecralt provides Ihe opportunity to integrate the results of these

efforts for subsequent on-o_ bit system demof_strations.
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3.0 SCOPE

The Contractor's activities are directed towards the following objectives:

Defining the system requirements [or a small, standad spacecraft bus as imposed by potential
tactical mission are,as which include tncteorology, communications, surveillance and tracking,

target location, navigation, and ciosslinkhig,

* Developing the system design for a small, standard spacecraft bus,

* Developing die systeln design fl>r a meteorological satellite usi,g file small, standard

spacecraft bus, and.

* Developing the system design for a COmlnunications satellite using subsystem and componeqt
technologies being developed by DARPA.

The small, standard spacecraft bus shall be capable of accommodating any of several potential mission

payloads. The spacecraft shall be compatible with d_e ALV and SSLV (and comparable launch vehicles), and

capable of being inserted into and operating in any of a variety of potential mission orbits, including low earth

circular (i.e., less dmn 400 nautical mile altitude), higher earth circular (i.e., greater than 400 nautical mile ahitudc),

and lvlolniya-type elliptical orbits.

Tbc spacecraft bus shall possess sJ.[icicnt space and power to enable impleme_]lation of, appropriate

hardware and software to SUplmrt duplex crosslink communications with suilably-equiplx:d satellites. The duplex

crosslink communications capability shall _ inherent in the spacecraft bus design, but shall permit optional

imptemcntalion of hardware�software. Besides supporting payload and Telemetry, Tracking and Command Clq'&C)

operations, the crosslink capability shall also support pass4hrough relay communications.

The TF&C and communications subsystems shall include appropriate hardware/software for embedded

encryption/decrypdon and com,nunicadons security (COtvlSEC).

The metcorok)gical satellite portion or the program requires the Contractor to develop the system-level

design for a meleorological satellite s),stcm usblg Ihc Advanced Vcr), Itigb Resolution Radiometer (AVI IRR) or

equivalent multi-spccual meteorological payload. The satellite shall be capable of being launched using either the

ALV or SSLV. The meteorological satellite mission data shall be compatible with die capabilities of existing

tactical wcadicr tcrmin:ds.

Thc conununications satellite portion of the program requircs the Contractor to develop a systelu-lcvcl

design for integrating and denlonslralhig atJvanccd lcchnolog)' spacecra[t and I)ayload subs),slCills aild colnl)onenL5

which are being developed under DARPA Sl)Onsorshi p. The payload technologies, when integrated, comprise an

advanced technology Extremely l ligh Frequency (El IF') colmnunications pack:lge capable of operating in 6, 8

and/or 12 hour Mohliya-type elliptical orbits. The satellite shall be capable of being launched using either the ALV

or SSLV.

4.0 CONTRACTOR TASKS

The OonQactor shall provide all management, teclmical anti adlninistrative personnel, facilities, cquipnlcnt,

supplies, material and services to accomplish the following tasks:

4.1 TASK 1: MANAGEMENT

The Conlractor shall appoint a Program Manager who shall be responsible for all aspects of this progr:lm

and who shall serve as the single Ix)tat of contact, The Conuactor's Program Manager shall coordinate all contract

activities with the Government Project Officer (hermffter referred to ,as the Project Officer). The Contractor's

Program/vlanagcr shall be responsible for direction of his Project Staff and for timely submission of CDP, L items.
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4.1.1 Kick-Off Meellng. WRhi, 30 calemhtr days following contract illitiad(m, the Contraclor shall meet ;it

DARPA with the DARPA Program Manager, tile Project Officer, and mmubcrs of the ASTP Systems Engiuee, ing

aud "lechuical Assistauce (SETA) team. Principle matters to be discussed will include project goals, ASTF'-SE'I'A-

Contractor interaction, and resolution of any technical qucstious.

4.1.2 Monthly Progress And Expenditure Reports. The Contractor shall prepare a momhly Progress Report

and an Expenditure Report which summarize tim previous mondl's results of all work performed, expenses irlcllrre<l,

problems encountered and recommendations. The Progress Report shall also identify the Contractor's plan/schedule

for accomplishing dm contract requirements for the next two mond_s. (CDRL AOOI, A002)

4.1.3 Informal Working Meetings. The Contractor shall provide technical participation during informal

working meetings to be held monthly (typically, one day per ineeting) at dm Contractor's facility. These sessions

are intended to cause as litde impact as possible to dm Contractor's efforts, yet enable sufficient insight to maintain

awareness of dm program activities and progress, and to assist with the resolution of any problems or issues that

may arise.

4.'I .4 Advanced Technology Meetings. The Contractor shall provide technical participation in meetings

which are arranged by dm Project Officer to address the DARPA-sponsored projects involving advanced leclmology

spacecraft a;_d payload subsystems and components. (For plamfing purlmses, approximately 16 one-day meetings

are anticipated with 75% being in the Los Angeles area and the remainder being at east coast locations.)

4.1.5 Quarterly Status Reviews. The Contractor shall presem oral reports to the Project Officer and DARPA

Program Manager summarizing ttle status/results of contract activity on a quarterly basis. The Quarterly $umis

Reviews shall altenmtely be held between the Contractor's facility and DARPA (Arlington, VA). The Contractor

shall prepare presentation material and colfferel_ce minutes for these reviews. (CDRL A003, A0{.}-4) ,

4.1.6 Mid-Term Review. "I'he C(mtraclor shall present ai_ oral Mid-Term Review to tile Project Officer and

DAP, PA Program Manager summarizing the teclmical investigations, status and results since contract start. The

Mid-Term Review shall be held at tim Comr,tctor's/:tcility. The Mid-Term Review will be atte_lded by a larger

Government audience to include representatives from the IVltlitary Services and other Govermuent agencies. "lhe

Contractor shall prepare p_eseutatior_ material aild corfference minutes for this _eview. (The Quarterly Status

Review is not required in the quarter for which the Mid-'l'ctm Review is scheduled.) (CDRL A003, A0(}.4)

4.1.7 Final Review. "File Contractor shall present an oral Final Review to the Project Officer and DARPA

Program b,'larmger summarizir_g the teclmical iuvesligatious, status and results since the Mid-Term Review. The

Final Review shall be held ;.it the Contractor's facility. The Final Review will Ix: attended by a larger Government

audience to iuc}udc represenlatives from the Mililary Services and other Government age;roles. The Contractor

shall prepare presentation material and conference minutes R_r dfis review. (Tim Quarterly Status Review is not

required in tim qnarter for which the Final Review is scheduled.) (CDRL A003, A004)

4.'1.8 Final Engineering Report. ]lie Co,tractor shall prepare a fired engineering rel_rt. (CDRL A005)

4.2 TASK 2: SYSTEM REQUIREMENTS DEFINITION

The contractor shall conduct analyses and trade studies to determine the system performance requirements

and operational characteristics for a multi-mission adaptable small standard spacecraft bus. "llm Contractor shall

perform uade-offs of the overall system architecture to determine: (1) which payloads, from polential mission areas

which include meteorology, communications, surveillalme and tracking, larger location, navigation, m_d crossliuking

can be accomlnodated by the spacecraft bus; (2) alternative orbits (including circular and Molniya-type elliptical)

useful for the various missions and their effect on spacecraft bus desigl_; (3) one-year (widl a goal of eighteen

mouths) and three-year (with a goal of 4 years) design lives on orbit and their impact as schedule and cost drivers;

(4) use of ALV, SSLV, and odmr optional launch vehicles; (5) system adal_tability and Flexibility h)r quick-rcslxmse

launch; (6) orbit insertiou and orbit transfer requirements; (7) autonomous spacecraft opcratious; (8) on-board dam

ATTACItMENT I - 3



_ IIIIU ". _ •

handling (including processor and mass memory) to support spacecraft requirements and reserve capacity for

payloads; (9) mission data commutlications requirements; (10) interoperability and compatibility with the Air Force
Satellite Control Network (AFSCN); (I 1) embedded COMSEC for the TI'&C and data links; and (12) any other

factors affecting system perfornlance.

The crosslink (including pass-thro||gll communications relay) trades shall illclude thc advantages and

disadv,'ultages for alternative frequency bands which as a |ninimum include S- and K-Bands.

The Contractor shall also include dm applicable mission ground segments as part of tile system

requirements trade-off activities. Tile trade-offs may considcr employment of a multi-mission capable Common

D;lla I.ink (CDL).

4.3 TASK 3: SPACECRAFT BUS SYSTEM DESIGN

Based on tile results of the system requirements definition task, d_e Contractor shall perform systems

engineering and design of a small, standard multi-mission adaptable spacecraft bus. The systems engineering and

design activities shall include, but ,are not lilnited to d_e following:

Structure anti mechanical subsystem
Altitude Determil_ation and Control

Orbit Detcrmi_lation and Control

TI'&C with embedded Encr)'ptioWDecryption (Including Satellite/AFSCN Interface and Control for

SGLS Compatibility)

Spacecraft Data l landling
Software

Electrical Power

Payload Interfaces and Integration
Commu|fications and COMSEC

Optionally Implemented Crosslinks
Thermal Control

Propulsion Systcn|
Orbit Insertion

Orbit Transfer

ALV and SSLV Compatibility (and Compatibility widl Odler Launchers)
Grout|d Support Equipment (C;SE)

"llle Coil(factor shall a(l(Ircss all external and internal system interfaces. The Col_tractor shall provide an
assessment of die ((clinical, schedule and cost risks of each subsystem and the ovcrall spacecraft.

4.4 TASK 4: METEOROLOGICAL SATELLITE SYSTEM DESIGN

Based upon tile spacecraft bus design developed ill paragraph ,1.3 (including optionally implemented

crosslink), the Contractor shall develop the system design for the meteorological satellite, including the design of

the following subsystems/segments:

Any Adaptation of die Spacecraft 13us Unique to d_e Multi-Spectral Meteorological Payload
and Nlission

Multi-Spectral Meteorological Payload Integration and Interfaces
/vlissioil Unique Equipment/Mission Unique Software (MUE/MUS), if required

Satellite Checkout Aftcr Integration into d)e ALV and SSLV, and

Unique GSE Required for tile Meteorological Spacecraft

The Contractor shall accomplish performance analyses in supportof the design and integration activities

for the meteorological spacecraft.
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The Conuactor shall addrcss all external and internal system interfaccs unique to d_c meteorological

satellite, including d)c mission ground segfncat. The mcteorological satellite mission data shall be compatible with

the capabilities of existing tactical wead_er terminals.

"I1)e Contractor shall provide an assessment of d)e technical, schedule and cost risks of each subsystem aml

the overall spacecraft.

4.5 TASK 5: ADVANCED TECHNOLOGY DEMONSTRATION SATELLITE SYSTEM DESIGN

Based upon the spacecraft bus design developed ill paragraph 4.3 (it_cluding optionally implemented

crosslink) m)d using DARPA-supplied data on advanced technology spacecraft and communications payload

subsystems and components, the Comractor shall develop the system design for an advanced technology

demonstration satellite capable of bei_g placed into a Molniya-type elliptical orbit.

5.0 REPORTS, DATA AND OTHER DELIVERABLES

All reports and data shall be generated and submitted in accordance wid_ the attached DD Fonn 1423 (or

equivalent), Contract Data Requirements List (CDRL).

6.0 SPECIAL CONSIDERATIONS

6.1 DOCUMENTS

The Contractor shall use tl_e following documents for guidance purposes only:

AFSCF-TR-86-204

DOD-IIDBK-3.13

MIL-IIDBK-340

M IL-S'I'D- 1540

TOR-0059(6110-01)-3

t

MUS Geaeric lmerface Description Document for Data System Ivlodernization, 14 May
1986

Design, Col_structiem, and Testing Requirements For One of a Kind Space Equipment. I

February 1986

Applications Guidelines for MIL-STD-1540B. Test Requirements for Space Vehicles
Test Requiremems for Space Vehicles

Air Force Coutrol Facility Space/Ground Interface, June 1987
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